

D1.3 - SPECIFICATIONS FOR INTEROPERABLE
SOFTWARE TOOLS

INTEROPERABLE CLIENT/SERVER AND
LEGACY SYSTEMS PROTOCOL CONVERTER

WP1 - Requirements, Use Cases, Specifications

T1.3 - Specifications For Interoperable Software Tools

Submission date: 31 Oct 2023

Project Acronym

Call

INTERSTORE

HORIZON-CL5-2022-D3-01

Grant Agreement N° 101096511

Project Start Date 01-01-2023

Project End Date 31-12-2025

Duration 36 months

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

2

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

INFORMATION

Written By Sunesis (SUN)
CyberGrid (CYG)
RWTH Aachen University (RWTH)

2023-10-03

2023-10-03

Checked by Alexandre Lucas (InescTec) 2023-10-18
Reviewed by Peter Nemcek, Andraz Andolsek (CYG)

Nithin Manuel (RWTH)

2023-10-16

Approved by Antonello Monti (RWTH) – Project Coordinator

Francesco Guaraldi (ENX)

2023-10-27

Status Final 2023-10-27

DISSEMINATION LEVEL

CO Confidential

CL Classified

PU Public X

VERSIONS

Date Version Comment

08-06-23 0.1 Outline - draft

12-06-23 0.2 Improved outline

15-06-23 0.3 Improved outline after partner meeting

26-06-23 0.4 Finished Ch 2

19-07-23 0.5 Finished Ch 4

07-08-23 0.6 Finished Ch 5

21-08-23 0.7 Finished Ch 6

04-09-23 0.8 Improvements of all chapters, Ch 7 and 8

18-09-23 0.9 Overall improvements, Chapter 9

26-09-23 0.91 Corrections, improvements

03-10-23 0.95 Corrections, improvements

03-10-23 0.96 Updated Use cases chapter

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

3

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

05-10-23 1.00 draft Minor updates – ready for internal review

25-10-23 1.00 final Final version

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

4

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

ACKNOWLEDGEMENT
InterSTORE is a EU-funded project that has received funding from the European
Union’s Horizon Research and Innovation Programme under Grant Agreement N.

101096511.

DISCLAIMER
The sole responsibility for the content of this report lies with the authors. It does not
necessarily reflect the opinion of the European Union. The European Commission is not
responsible for any use that may be made of the information contained therein.

While this publication has been prepared with care, the authors and their employers provide
no warranty with regards to the content and shall not be liable for any direct, incidental or
consequential damages that may result from the use of the information or the data contained
therein.

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

5

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

ABBREVIATIONS AND ACRONYMS
EMS Energy Management System
NATS Neural Autonomic Transport System
msg Message
MQTT Message Queuing Telemetry Transport
XML Extensible Markup Language
JSON JavaScript Object Notation
TLS Transport Layer Security
JWT JSON web token
TCP Transmission Control Protocol
QoS Quality of Service
YAML Yet Another Markup Language
LPC Legacy Protocol Converter
API Application Programming Interface
JAR Java ARchive
JVM Java Virtual Machine
LTS Long Term Support
SSL Secure Sockets Layer
MIT Massachusetts Institute of Technology
GPL General Public License
BSD Berkeley Source Distribution

ASF Apache Software Foundation
FSF Free Software Foundation
HESS Hybrid Energy Storage Systems

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

6

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

TABLE OF CONTENTS

EXECUTIVE SUMMARY ... 10

1 Introduction .. 12

2 Architecture and Development Methodology .. 14

2.1 Client/server ... 14

2.1.1 Architecture .. 14

2.1.2 Communication scenarios ... 15

2.1.3 Sequence diagrams .. 21

2.1 Legacy protocol converter .. 23

2.1.1 Architecture ... 23

2.1.2 Communication scenarios .. 24

2.1.3 Sequence diagrams ..27

2.2 Registration and authentication of devices...29

2.2.1 Registration of devices ...29

2.2.2 Authentication of devices ...29

2.2.2.1 Authentication with NATS ..29

2.2.2.2 Authentication with MQTT ..29

2.3 Message exchange patterns ..29

2.3.1 One-way ...29

2.3.2 Request/response ... 30

2.3.3 Correlation ... 30

2.3.4 Request/data stream .. 30

2.3.5 Delivery options and subjects ... 30

3 Use case scenarios ... 31

3.1 Hybridization of storage systems .. 31

3.2 Integration on an inverter ... 31

3.3 Flexibility monetization and energy communities ... 32

3.4 Home management system .. 32

3.5 Flexibility products management platform .. 32

4 Supported protocols .. 34

4.1 Supported protocols on device (client) side .. 34

4.1.1 Modbus .. 34

4.1.2 MQTT ... 34

4.2 Supported protocols on EMS (server) side.. 34

4.2.1 NATS .. 34

4.2.2 MQTT .. 35

4.3 Description of NATS .. 35

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

7

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

5 Message structures and schemas .. 37

5.1 IEEE 2030.5... 37

5.1.1 Quick introduction .. 37

5.1.2 Abstract Device .. 45

5.1.2.1 IEEE2030.5 XML schema ... 45

5.1.2.2 Sample XML .. 47

5.1.2.3 JSON schema ... 47

5.1.2.4 Sample JSON .. 49

5.1.3 Event .. 50

5.1.3.1 IEEE2030.5 XML schema ... 50

5.1.3.2 Sample XML ... 51

5.1.3.3 JSON schema .. 51

5.1.3.4 Sample JSON .. 53

5.1.4 TimeConfiguration .. 53

5.1.4.1 IEEE2030.5 XML schema ... 53

5.1.4.2 Sample XML .. 54

5.1.4.3 JSON schema ... 54

5.1.4.4 Sample JSON .. 55

5.1.5 ServiceChange .. 55

5.1.5.1 IEEE2030.5 XML schema ... 55

5.1.5.2 Sample XML .. 56

5.1.5.3 JSON schema ... 56

5.1.5.4 Sample JSON .. 56

5.1.6 Error ... 56

5.1.6.1 IEEE2030.5 XML schema ... 57

5.1.6.2 Sample XML .. 57

5.1.6.3 JSON schema ... 57

5.1.6.4 Sample JSON .. 58

5.2 Supported message structures and formats .. 58

5.2.1 Supported message structures and formats in client/server 58

5.2.2 Supported message structures and formats in legacy protocol converter 58

5.3 Fault and exception messages .. 58

6 Message transformation and configuration ... 59

6.1 Transformation framework ... 59

6.2 Configuration options .. 59

6.3 Transforming MQTT to NATS/IEEE2030.5 ... 60

6.4 Transforming Modbus to NATS/IEEE2030.5 ... 63

7 Software architecture and Development Methodology .. 65

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

8

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

7.1 Software architecture description .. 65

7.2 Build and deployment options .. 65

7.3 Container support on different platforms ...66

7.4 Microservice architecture ..66

7.5 Programming language and NATS libraries ...66

7.6 Security ..66

7.7 Development methodology ..66

8 Software and test procedures requirements ... 67

8.1 Beyond state of the Art (from the GA) .. 67

8.2 Description of task T1.3 (from the GA) .. 67

8.3 Implementation approach for a generalized interface (from the GA) 67

9 Proposed methodology for testing the interoperability software ... 68

9.1 Testing architecture .. 68

9.1.1 Test Device Overview ... 70

9.1.2 EMS Overview ... 70

9.2 CSIP Smart Inverter Profile in IEEE 2030.5 ... 70

9.2.1 Time ... 71

9.2.2 Device Capability... 71

9.2.3 End Device .. 71

9.2.4 Function Set Assignments (FSA) ... 71

9.2.5 Distributed Energy Resource (DER) ... 71

9.3 CSIP IEEE 2030.5 Implementation ... 71

9.3.1 Device Capability ... 71

9.3.2 End Device .. 71

9.3.3 Function set Assignment ...72

9.3.4 Distributed Energy Resource (DER) ...72

9.4 Testing Methodology ... 73

9.4.1 Mock Testing .. 73

9.4.2 Stubbing Testing .. 73

9.4.3 Integration Testing .. 73

9.4.4 End To End Testing .. 74

9.5 How to test the IEEE 2030.5 Client ... 74

10 Open-source access on GitHub ... 76

10.1 GitHub repository .. 76

10.2 Open-source license models .. 76

10.2.1 MIT license .. 76

10.2.2 Apache License 2.0 .. 77

10.2.3 GNU GPL license .. 78

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

9

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

10.2.4 Berkeley Software Distribution (BSD) ... 79

11 Conclusion ... 80

12 REFERENCES .. 81

13 LIST OF TABLES ... 82

14 LIST OF FIGURES ... 83

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

10

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

EXECUTIVE SUMMARY
This document presents the specification of the interoperable open-source software tools to
integrate hybrid energy storage systems (HESS) for the Horizon Europe project INTERSTORE.
The tools consist of two components: an interoperable client/server for distributed energy
storage and a legacy systems protocol converter. The main objective of these tools is to
provide open source, out-of-the-box support for IEEE2030.5 communication between
devices of distributed energy sources (DER) including energy storage systems (ESS) and
energy management systems (EMS), as well as support for next generation NATS messaging
as a communication protocol. The tools will also provide support for IEEE2030.5 messages
in both XML and JSON formats, as well as other protocols such as MQTT and ModBus.

Providing support for the IEEE2030.5 standard together with next-generation cloud-native
messaging architecture NATS is important not only for preparing the building blocks for
seamless integration and interoperability of devices and systems, standard compliance, but
also for improving technical aspects, such as reliability, scalability and capability to work
with computer cloud environments and cloud-native software. Another important aspect is
to provide support for IEEE2030.5 not only in the original XML format, but also in the widely
used JSON format which supersedes the XML format.

The document defines the detailed specifications for each component, interoperable
client/server for distributed energy storage and legacy systems protocol converter. This
includes the architectural diagrams, communication scenarios, sequence diagrams,
message exchange patterns, protocols, message schemas and structures, fault and
exception signalling, message transformation and configuration framework, software
architecture, and use cases. The document also describes how the software components will
be delivered (as Docker containers, pre-built Java JAR archives, or custom built for specific
use cases) and how they will be available on GitHub as open-source projects.

The document is intended for developers, researchers, and practitioners who are interested
in developing, testing, deploying, or using the interoperable open-source software tools to
integrate DER. The document assumes that the readers have some basic knowledge of DER,
ESS, EMS, the IEEE2030.5 standard, the NATS messaging technology, and microservice
architecture. The document is organized as follows:

• Section 1: Introduction. This section provides the background, motivation, objectives, and
scope of the document.

• Section 2: Architecture and Development Methodology. This section describes the
architecture and development methodology of the interoperable open-source software
tools to integrate HESS, including the interoperable client/server and the legacy systems
protocol converter components.

• Section 3: Use case scenarios. This section describes some use case scenarios to
illustrate how the software tools will be used in various scenarios that are part of this
project, including HESStec and HyDEMS, Capwatt, CyberGrid and CyberNoc, FZJ and ICT
platform, Enel-X and VPP Flex platform.

• Section 4: Supported protocols. This section describes the supported protocols on the
device (client) side and on the EMS (server) side, including ModBus, MQTT, NATS, and
IEEE2030.5. It also provides a description of NATS as a next generation messaging
protocol.

• Section 5: Message structures and schemas. This section describes the message
structures and schemas for IEEE2030.5 messages in both XML and JSON formats, as
well as the fault and exception messages. It also describes the supported message
structures and formats in the client/server and the legacy protocol converter
components.

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

11

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

• Section 6: Message transformation and configuration. This section describes the
message transformation and configuration framework that allows simple and fully
configurable transformation of messages between ModBus, MQTT, NATS, IEEE2030.5 XML
and JSON messages.

• Section 7: Software architecture and Development Methodology. This section describes
the software architecture of the components, following the microservice architectural
patterns. It also describes the build and deployment options, container support on
different platforms, programming language and NATS libraries, security, and
development methodology of the project.

• Sections 8 and 9: Software and test procedures requirements and proposed methodology
for testing the interoperability software. These sections provide a specification of various
testing procedures.

• Section 10: Open-source access on GitHub. This section provides information about the
GitHub repository, the open-source license models, and the development methodology
of the project.

• Section 11: Conclusion. This section summarizes the main points and outcomes of the
document.

This document provides clear and comprehensive specifications of the interoperable open-
source software tools. The software development will be carried out within WP 2, tasks T2.1,
T2.2 and T2.3.

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

12

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

1 Introduction
In this deliverable, which has been created within WP1, Task 1.3, we have specified the tools
to replicate, adapt, and improve interoperable open-source software to integrate distributed
energy sources (DER) devices with energy management systems (EMS). This specification
addresses:

i) interoperable client/server for distributed energy storage,
ii) legacy systems protocol converter,
iii) testing procedures.

The objectives of the interoperable client/server and the legacy systems protocol converter
are to:

• Provide an open source, out-of-the-box support for IEEE2030.5 communication
between devices and EMS systems. The objective is to provide support for IEEE2030.5
messages in original XML format, as well as IEEE2030.5 in JSON format.

• Provide support for next generation NATS messaging as a communication protocol
between devices and EMS systems, superseding other communication mechanisms
(such as REST over HTTP) and enabling message-driven, loosely coupled and
scalable communication platform.

• Provide a reference implementation as an open-source project, available on GitHub.

In this specification we have presented the detailed requirements for the interoperable
client/server (we will use the wording client/server in the rest of the document) and the
legacy systems protocol converter (we will use the wording legacy protocol converter in the
rest of the document). For each of them, we have defined the architectural diagrams,
communication scenarios and specified sequence diagrams to show the interaction of
messages.

The specification also defines the message exchange patterns, including one-way,
request/response and data streaming patterns, together with correlation, delivery options,
subjects and registration and authentication of devices. It specifies the protocols supported
on the device side and on the EMS side, including MQTT, ModBus and NATS.

The specification defines the message schemas and structures. Both client/server and
legacy protocol converter will support the complete set of IEEE2030.5 messages and types
– 321 messages and types, as defined by the IEEE2030.5 XML schema definitions. Also, fault
and exception signalling has been defined.

Furthermore, within WP2, we will define the corresponding JSON schemas for all IEEE2030.5
data elements and types, which will enable using IEEE2030.5 data formats with JSON also
(in addition to XML). As JSON is becoming more and more popular in software architectures,
this will be an important step towards interoperability.

This specification also describes another very important building block for the legacy
protocol converter, the message transformation and configuration framework. This
framework will allow simple and fully configurable transformation of messages between
ModBus, MQTT, NATS, IEEE2030.5 XML and JSON messages.

Finally, this specification also provides a description of software architecture, which will
follow the microservice architectural patterns and describes how the software components
will be delivered (as Docker containers, pre-built Java JAR archives, or custom built for
specific use cases). As already mentioned, all software artifacts will be available on GitHub.

This specification also provides a description of testing procedures, testing methodologies
and description of various testing scenarios. Furthermore, it provides brief description of use

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

13

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

cases to define, how the software components (client/server and legacy protocol converter)
will be used in various use cases, which are part of InterSTORE project.

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

14

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

2 Architecture and Development Methodology
In this chapter, the architecture of the client/server and the legacy protocol converter from
the perspective of message exchange between the EMS (Energy Management System) and
the various devices will be described. The different communication scenarios over NATS will
be shown. Additionally, the development methodology will be outlined.

The main objective of the client/server and the legacy protocol converter is to enable
communication between the device (client) and the EMS system (Server) over NATS
massaging communication protocol and use standard IEEE2030.5 elements to enable
interoperability, scalability, loose coupling, real-time data exchange, secure and reliable
communication and overcome the typical problems of existing protocols and formats, such
as REST over HTTP, MQTT and ModBus.

The client/server component is supposed to be integrated within the client device and the
EMS systems. The legacy protocol converter is a separate software component that will
provide a bridge between the devices using legacy protocols, such as ModBus and MQTT, and
will also provide support for message payload transformation to IEE2030.5 using XML or
JSON formats.

In the next sections we first describe the client/server and then the legacy protocol
converter.

2.1 Client/server

2.1.1 Architecture
The architecture of the client/server tool can be seen in Figure 1. Devices act as clients; EMSs
act as servers. Client or server software can be included as a library in existing programs,
or it can run as a separate microservice. It is also possible for multiple EMSs to be present.
Each EMS can communicate with other EMSs and each device can communicate with multiple
EMSs.

Figure 1: Client/server architecture.

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

15

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

Figure 2: Client/server architecture where multiple devices and EMSs are present.

2.1.2 Communication scenarios
In the client/server scenario, the Energy Management Systems (EMS) functions as server,
while devices serve as clients. Figure 3 provides a broad overview of the two-way
communication dynamics between clients (devices) and the server (EMS). It is possible that
there are multiple EMSs present and for EMSs to communicate between each other using
the NATS/IEEE2030.5, so EMSs can act both as servers and as clients. This way we can
achieve communication between EMS systems and their interoperability using IEEE2030.5
standard.

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

16

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

Figure 3: Overview of the client/server communication.

For a more comprehensive understanding of the communication between clients and the
server, detailed descriptions are available in the subsequent figures.

The subject-based NATS messaging follows a publish-subscribe pattern, wherein devices
both subscribe to and publish messages to subjects. Devices possess the flexibility to
subscribe to multiple subjects, encompassing shared subjects or unique subjects dedicated
to each device. It is also possible for multiple EMSs to subscribe to the same subject where
they can publish-subscribe to device messages or messages from other EMSs.

Figure 4 shows the option, where devices use the same subject to communicate with the
EMS. All communication is conducted through this subject.

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

17

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

Figure 4: Publish-subscribe pattern in client/server communication using shared subject.

Figure 5 shows the option, where each device has its own subject. All communication from
the EMS to devices is through the designated subject.

Figure 5: Publish-subscribe pattern in client/server communication using one subject per device.

Figure 6 shows the option, where multiple EMSs and devices are present. The main goal of
this figure is to show that there can be multiple EMSs present in the network and they can
subscribe to the same subjects for devices or to the subjects used only by EMSs to
communicate between each other.

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

18

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

Figure 6: Publish-subscribe pattern in client/server communication with multiple EMSs and devices.

In the request-reply pattern, the server initiates a request to a specific subject and
subsequently receives responses from devices. Devices can either reply exclusively to the
sender or transmit responses to a subject designated within the request (Figure 7). It is also
possible for the messages of the same subject to be replied through a different reply subject.

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

19

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

Figure 7: Request-reply pattern in client/server communication.

EMSs can also request those replies from other EMSs. For example, in the Figure 8, the EMS
2 can request a reply through Subject 2. This means that the request can be for Device 2 or
for EMS 1. EMS 2 will receive a reply through Reply 2.

Figure 8: Request-reply pattern in client/server communication with multiple EMSs

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

20

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

An additional scenario involves the server (EMS) issuing a request to a subject and
subsequently receiving a continuous stream of responses from the client (device), thereby
illustrating the request-stream pattern (Figure 9). Examples of such scenarios are real-time
or near-real-time metering data, temperature readings, multimedia data, etc. Multiple EMSs
can request a stream over the same subject.

Figure 9: Request-stream pattern in client/server communication.

Figure 10 showcases the scenario where there is an additional EMS present. The role of this
EMS 2 in the example is just to request streams from EMS 1.

Figure 10: Request-stream pattern in client/server communication where another EMS is present.

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

21

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

2.1.3 Sequence diagrams

Diagram on Figure 11 shows the authentication and registration flow of a client device with
the EMS acting as a server. It also showcases the subscription to the subject on the client-
side and the publishing of a message to the subject.

Figure 11: Sequence diagram showing authentication and registration of client device and publish-subscribe

pattern.

Each of the following sequence diagrams assumes that the device is already authenticated
and registered. Authentication and registration are described in Section 2.3.

The Diagram from Figure 12 shows the communication sequence when the client and the
server are using the request-reply option.

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

22

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

Figure 12: Sequence diagram showing request-reply pattern between client and server.

The Diagram from Figure 13 shows the communication between client and server when the
server sends a request for streaming communication to the client. The Client sends
continuous messages until it receives a stop message from the server, or some predefined
condition from request holds such as elapsed time.

Figure 13: Sequence diagram showing request-stream pattern between client and server.

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

23

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

2.1 Legacy protocol converter

2.1.1 Architecture
The Legacy protocol converter will act as a middleman between energy management
systems and devices. The role of the legacy protocol converter is to convert messages from
legacy protocols, used by devices, such as Modbus and MQTT1 to protocols used by EMS,
primarily NATS protocols Legacy protocol converter will also implement schema
transformations, which will allow conversion of messages between XML, JSON and Modbus.
On the EMS side, IEEE2030.5 will be fully supported with the possibility to use IEEE2030.5
messages as XML or JSON.

Devices have the role of clients; EMSs have the role of servers.

An overview of the architecture of the legacy protocol converter can be seen in Figure 14,
Figure 15 and Figure 16.

Figure 14: Architecture of legacy protocol converter.

1 Support for other legacy protocols can be added by the open-source community.

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

24

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

Figure 15: Architecture of legacy protocol converter with multiple devices and EMSs.

Figure 16: Architecture of legacy protocol converter where two legacy protocol converters communicate over
internet.

2.1.2 Communication scenarios

Figure 17: Overview of the communication between EMS, legacy protocol converter and devices.

Similarly to the client/server architecture, the legacy protocol converter will also support
publish-subscribe, request-reply and the request-stream patterns.

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

25

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

In Figure 18, communication, using publish/subscribe pattern, is shown between EMS, legacy
protocol converter and devices. Like client/server architecture, here devices can also listen
to shared subjects or to individual subjects. EMSs can also communicate over the same
subject.

Figure 18: Publish/subscribe pattern using legacy protocol converter where devices share the same subject.

Figure 19 showcases the scenario where each device has its own subject. Communication
with each device is conducted through the designated subject.

Figure 19: Publish/subscribe pattern using legacy protocol converter where each device has its own subject.

Figure 20 showcases the scenario where two legacy protocol converters, multiple EMSs and
devices are present. The communication with other EMSs is through the subject to which all
EMSs are subscribed to.

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

26

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

Figure 20: Publish/subscribe pattern using two legacy protocol converters where multiple EMSs and devices
are present.

In the request-reply pattern, the server initiates a request to a specific subject and
subsequently receives responses from devices. Devices can either reply exclusively to the
sender or transmit responses to a subject designated within the request. The EMS
communicates with the legacy protocol converter and devices also communicate with legacy
protocol converter. This can be seen in Figure 21.

Figure 21: Request-reply pattern using legacy protocol converter.

Figure 22 shows the scenario where there are two EMSs present. EMS 1 requests replies
through the subject Reply 1, EMS 2 requests replies through the subject Reply 2.

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

27

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

Figure 22: Request-reply pattern using legacy protocol converter where two EMSs are present.

An additional scenario involves the server issuing a request to a subject and subsequently
receiving a continuous stream of responses from the devices, thereby illustrating the
request-stream pattern. EMS sends a request to legacy protocol converter which forwards
this request to devices, and devices send continuous stream of replies to the EMS through
legacy protocol converter. This can be seen in Figure 23.

Figure 23: Request/stream pattern using legacy protocol converter.

2.1.3 Sequence diagrams

The Diagram in Figure 24 shows a simplified authentication and registration of client device.
It also showcases the subscription to the subject on the client-side and the publishing of a
message to the subject.

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

28

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

Figure 24: Sequence diagram showing authentication and registration of client device and publish-subscribe

pattern.

Diagram in Figure 25 shows how the communication flows when devices initiate a request
and when EMS initiates a request. The Legacy protocol converter transforms messages and
forwards them.

Figure 25: Sequence diagram showing request-reply pattern with legacy protocol converter.

In Figure 26, request-stream pattern is shown, where device sends multiple replies to a
request.

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

29

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

Figure 26: Sequence diagram showing request-stream pattern with legacy protocol converter.

2.2 Registration and authentication of devices

2.2.1 Registration of devices
Each device when it sends its first message, will also register with either the server or the
legacy protocol converter. The Legacy protocol converter and server will keep a list of
registered devices and each time a device sends a first message, it will be added to the list,
alongside with the time of the message. After a certain period (configurable, e.g. 48 hours),
devices that have not sent a single message within this timeframe, will be removed from the
list.

2.2.2 Authentication of devices
Each device that will connect will also be authenticated. Authentication differs when
connecting with NATS or with MQTT, Modbus does not support authentication so Modbus
devices will not be authenticated.

2.2.2.1 Authentication with NATS
Devices will authenticate with NATS in one of the following ways:

• Token authentication
• Username/Password credentials
• TLS Certificate
• JWT

2.2.2.2 Authentication with MQTT
Device will authenticate with MQTT with Username/Password credentials.

2.3 Message exchange patterns
Message exchange patterns define how messages are sent and received between
applications or components in a distributed system. Both NATS and MQTT support various
message exchange patterns to facilitate communication and data flow.

2.3.1 One-way
In a one-way pattern, a message is sent from a sender to a receiver without any expectation
of a response. This pattern is suitable for scenarios where the sender only needs to
communicate information to the receiver without requiring any acknowledgment.

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

30

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

2.3.2 Request/response
The request/response pattern involves a sender (requester) sending a message to a receiver
(responder) and expecting a response back. This pattern is commonly used for synchronous
communication, where the sender waits for the response before proceeding.

2.3.3 Correlation
Correlation is a pattern that enables applications to associate related messages with each
other. It allows for tracking and managing conversations between components more
effectively, particularly in request/response scenarios.

2.3.4 Request/data stream
Both NATS and MQTT support the request/data stream pattern, where data is streamed from
a publisher to multiple subscribers. This pattern is useful for scenarios where real-time data
updates or continuous streams of information are required.

2.3.5 Delivery options and subjects
Both NATS and MQTT provide various delivery options and support subjects/topics as a
means of addressing messages.

Guaranteed delivery: Both NATS and MQTT offer mechanisms to ensure the reliable delivery
of messages. In NATS, it can use a persistent store to ensure message durability and prevent
message loss in case of failures. MQTT provides options for Quality of Service (QoS) levels,
where higher QoS levels guarantee message delivery and acknowledgment.

Topics: Both NATS and MQTT use topics to categorize and route messages. A topic is a string
that identifies the subject of a message, and subscribers can subscribe to specific topics of
interest. When a message is published to a topic, it is delivered to all subscribers that have
expressed interest in that topic.

NATS support consumers. A consumer serves as a persistent perspective on a stream,
serving as a bridge for clients to access and process a specific set of messages within the
stream while also maintaining a record of which messages have been successfully received
and acknowledged by these clients. Consumers can follow a push-based approach, where
messages are actively sent to a designated subject, or a pull-based approach, which enables
clients to request batches of messages when needed. With consumers it is possible to
provide at least once delivery guarantee, unlike with core NATS where it is at most once
delivery guarantee.

Overall, NATS and MQTT are versatile messaging protocols that support various message
exchange patterns, making them suitable for a wide range of distributed system
architectures and communication requirements.

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

31

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

3 Use case scenarios

The developed client/server and legacy protocol converter will be used in real-time use
cases to showcase its applicability and versatility. Among InterSTORE project partners we
devised a plan regarding how and where the developed tools will be put in practise. In
general, there are several instances where we will implement developed tools.

3.1 Hybridization of storage systems
HESStec will develop Hybrid Distributed Energy Management Systems (HyDEMS) which will
upgrade existing state-of-the-art InMS system, which primarily focuses on real-time control
of different storage systems. The upgraded version will also integrate legacy protocol
converter, with the goal of allowing different storage systems, used in the aligned use case,
to communicate by IEEE 2030.5 over NATS with the Modbus TCP protocol used by HyDEMS.
Implementation of legacy protocol will be done via Linux based hardware which is supported
and already integrated in HyDEMS.

Figure 27: Integration of the IEEE 2030.5 over NATS in HESStec HyDEMS.

3.2 Integration on an inverter
Capwatt is an innovative company that promotes integrated energy solutions and tries to
maximise synergies between decentralised resources. To demonstrate the applicability of
our recently developed communication protocol, Capwatt will try to connect the second-life
lithium battery to its system via IEEE 2030.5 over NATS, and in parallel via ModBus TCP IP.
To do this, the Ingeteam inverter will, probably, have to be connected to a switch that will
connect the inverter and the EMS in parallel via ModBus TCP IP and the IEEE 2030.5 protocol.
To enable communication, it will be necessary to implement a legacy protocol in its LabVIEW
management system, as it supports many different protocols (Modbus TCP, GPIB, CAN, LIN,
FlexRay, ...), but these have yet to be verified and tested.

Figure 28: Integration of the IEEE 2030.5 over NATS in Capwatt's LabVIEW.

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

32

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

3.3 Flexibility monetization and energy communities
CyberGrid’s state-of-the-art flexibility management platform CyberNoc allows its users
seamless integration of distributed assets, real-time pooling of the available resources, and
access to multiple markets where auto-bidding can be used to maximize the revenue from
different balancing services. In the scope of our project CyberNoc will implement the newly
developed protocol IEEE 2030.5 over NATS directly in its system and use it to connect to
different storage systems (batteries and perhaps heat pumps). As most of the deployed
storage systems don’t have an option to communicate via the new protocol, legacy protocol
converters will be used to make the transition. Ideally implementation of it will be done
directly to the inverters (Fronius inverters supporting Modbus TCP are in use). Alternatively,
Linux based IoTmaxx Gateway GW4100 will be used to make the translation from Modbus
TCP to IEEE 2030.5 over NATS.

Figure 29: Integration of the IEEE 2030.5 over NATS in CyberGrid’s CyberNoc.

3.4 Home management system
Forschungszentrum Jülich developed and deployed a FIWARE-based ICT platform for the
integration of different assets. In InterSTORE, the ICT platform will be upgraded to support
the integration of hybrid energy storage systems (HESS) and it will be used for the needs of
the home management system by Eaton. The list of used HESS consists of a High-energy
battery system (Tesla), a High-power battery system (Riello) and can be later expanded with
the addition of a photovoltaic (PV) system and heat pumps. Use case 3 of the project aims at
testing the IEEE 2030.5 over NATS integration and performance (on the battery systems)
compared to current practice (FIWARE). Both battery systems support Modbus TCP and have
inverters that do not support the new protocol's implementation yet. Thus, the legacy protocol
converter will be implemented on the device side, by means of a Raspberry Pi 4 (RPi4). Since
the ICT platform communicates via MQTT and cannot be modified, integration of the legacy
protocol converter on the ICT side will be done on an RPi4 device as well.

Figure 30: Integration of the IEEE 2030.5 over NATS in FZJ ICT platform.

3.5 Flexibility products management platform
Enel-X is using state-of-the-art platform, which allows the management of different types
of flexibility products within the same hybridized portfolio. During the project duration the
VPP platform will be further developed to address the rising rate of BESS and EV

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

33

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

installations. To optimally allocate needed energy management platform will be upgraded
with IEEE 2030.5 via NATS interface. Integration will be two phased. In the first phase (on the
picture bellow) legacy protocol and microservice will be implemented to connect devices and
management platform. Later the EMS will be upgraded with client/server protocol directly.

Figure 31: Integration of the IEEE 2030.5 over NATS in Enel-X VPP Flex platform.

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

34

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

4 Supported protocols

4.1 Supported protocols on device (client) side

4.1.1 Modbus
Modbus is a widely adopted communication protocol in industrial automation. It facilitates
the exchange of data using a master-slave architecture, supporting various physical layers
like RS-232, RS-485 and Ethernet. Known for its simplicity and interoperability, Modbus finds
applications in systems such as SCADA and PLCs for control and monitoring in industrial
environments as well as battery and PV inverters.

In this scenario, the client side implements Modbus TCP protocol to establish communication
with a legacy protocol converter. By leveraging Modbus TCP, the client can exchange
messages with the converter effectively. To ensure smooth interoperability, the client needs
to provide detailed descriptions of function codes and registers for the converter's usage.
This information allows the legacy protocol converter to accurately convert the messages
between Modbus TCP and the legacy protocol.

By utilizing Modbus TCP and providing the necessary information, the client enables
seamless integration between modern communication standards and the legacy system. This
ensures efficient data exchange and compatibility in industrial automation settings, allowing
the client to interface with the legacy infrastructure using Modbus TCP as a bridge. (Modbus,
2023)

4.1.2 MQTT
MQTT is a lightweight messaging protocol specifically designed for efficient communication
in IoT applications. It utilizes a publish-subscribe pattern, where publishers send messages
to a central broker, which then distributes them to interested subscribers based on topics.
MQTT is well-suited for resource-constrained devices and provides different levels of
message delivery quality. It has gained widespread popularity in the IoT domain.

In this scenario, the client will utilize the MQTT protocol to facilitate message exchange with
a legacy protocol converter. To establish communication, the client will subscribe and
publish to predefined topic patterns. The legacy protocol converter will also subscribe and
publish to these topics. Both sides must utilize Quality of Service (QoS) level 2 to ensure
minimal loss of information during message transmission.

By leveraging the MQTT protocol, the client can seamlessly exchange messages with the
legacy protocol converter. The client and converter will subscribe and publish to the
appropriate topics, enabling bidirectional communication while maintaining a high level of
message delivery reliability using QoS level 2.

Overall, MQTT's lightweight nature and its ability to support QoS levels make it a suitable
choice for efficient and reliable communication between IoT devices and legacy systems
through the protocol converter. (MQTT, 2023)

4.2 Supported protocols on EMS (server) side

4.2.1 NATS
NATS is a lightweight and high-performance messaging system designed for cloud-native
applications. It operates on a publish-subscribe model, prioritizing fast and efficient
communication. NATS is recognized for its simplicity, scalability, and low-latency messaging

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

35

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

capabilities. It has gained significant popularity in distributed systems, microservices, and
IoT applications.

In this scenario, the server side will utilize NATS to facilitate communication with a legacy
protocol converter while conforming to the IEEE 2030.5 specification. By leveraging NATS,
the server can establish seamless integration with the converter, enabling data exchange
following the prescribed standard.

The server will support various communication patterns provided by NATS, including
request-reply and publish-subscribe. This flexibility allows for the implementation of
different interaction modes with the legacy protocol converter. The request-reply pattern
facilitates direct communication, enabling the server to make requests and receive
corresponding replies. On the other hand, the publish-subscribe pattern enables the server
to publish messages to topics and receive updates from subscribed topics.

By utilizing NATS and supporting multiple communication patterns, the server can efficiently
communicate with the legacy protocol converter, adhering to the IEEE 2030.5 specification.
This approach ensures compatibility and effective data exchange, making NATS an excellent
choice for cloud-native applications that require seamless integration with legacy systems.

4.2.2 MQTT

Communication between server and legacy protocol converter is through MQTT standard
with both broker and clients using Quality of Service level 2. Server will act as a broker, while
legacy protocol converter will either act as a client or act as a broker, depending on the type
of messages as described in paragraph 4.1.2.

4.3 Description of NATS
NATS is a cutting-edge technology that enables the functionality of modern distributed
systems. In this context, connective technology plays a crucial role in handling tasks like
addressing, discovery, and message exchange that drive common patterns in distributed
systems. These patterns involve services/microservices, which are responsible for asking
and answering questions, as well as stream processing, which involves making and
processing statements.

Modern distributed systems are characterized by a growing number of interconnected
components that generate vast amounts of data. To drive business value, these systems
leverage both services and streams. Furthermore, they are defined by their ability to function
independently of specific locations, allowing for mobility not just in frontend technologies but
also in backend processes, microservices, and stream processing—all while maintaining a
strong focus on security.

However, the challenges faced by current technologies designed to connect mobile front
ends to static backends are becoming evident in the context of these modern systems.
Existing technologies often rely on hostname (DNS) or IP and port for addressing and
discovery, follow a 1:1 communication pattern, and employ various security patterns for
authentication and authorization. While these technologies have been suitable for many
scenarios, the evolving landscape of microservices, functions, and stream processing
moving to the edge is putting their assumptions to the test.

NATS, on the other hand, manages addressing and discovery based on subjects, not limiting
itself to hostname and ports. It defaults to a more versatile M:N communication pattern,
which includes 1:1 communication but offers much broader capabilities. This flexibility allows

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

36

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

developers to consider the broader picture—how various moving parts can work together in
production without the limitations imposed by a 1:1 system. In this context, the need for load
balancers, log systems, network security models, proxies, and sidecars can be reduced or
eliminated.

Another strength of NATS lies in its deployability, as it can be set up in diverse environments,
including bare metal, virtual machines, containers, Kubernetes (K8S), devices, or any chosen
environment. NATS works smoothly within deployment frameworks or even independently
without them.

Furthermore, NATS emphasizes security and follows a secure-by-default approach,
reducing the need for network perimeter security models. This aspect becomes particularly
important when considering the mobilization of backend microservices and stream
processors, where security often becomes a major concern.

NATS will be used in both client/server architecture and legacy protocol converter. It will act
as a main way of communication between all involved devices. (NATS, 2023)

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

37

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

5 Message structures and schemas
5.1 IEEE 2030.5

5.1.1 Quick introduction

IEEE2030.5 is a communication standard developed by the Institute of Electrical and
Electronics Engineers. It is designed to facilitate communication and resource management
between energy companies and end-user energy devices.

The application layer with TCP/IP providing functions in the transport and Internet layers to
enable utility management of the end user energy environment, including demand response,
load control, time of day pricing, management of distributed generation, electric vehicles, etc.
is defined in this standard. Depending on the physical layer in use (e.g., IEEE 802.15.4, IEEE
802.11, IEEE 1901, IEEE 1901.2), a variety of lower layer protocols may be involved in providing
a complete solution. Generally, lower layer protocols are not discussed in this standard
except where there is direct interaction with the application protocol. The mechanisms for
exchanging application messages, the exact messages exchanged including error messages,
and the security features used to protect the application messages are defined in this
standard. With respect to the Open Systems Interconnection (OSI) network model, this
standard is built using the four layer Internet stack model. The defined application profile
sources elements from many existing standards, including IEC 61968 and IEC 61850

In the following chapters there are 5 structures defined from IEEE2030.5’s sep.xsd file and
are also represented in JSON schema. Each structure has a sample with it. This is just to
showcase a few samples in XML and JSON format.

The whole JSON schema with all the structures will be developed in WP2.

(IEEE Standard for Smart Energy Profile Application Protocol, 2018)

Table 1: Structures defined in the IEEE2030.5.

Element
number

Name and type

1. DeviceCapability

2. AbstractDevice

3. DeviceStatus

4. EndDevice

5. EndDeviceList

6. Registration

7. SelfDevice

8. Temperature

9. FunctionSetAssignmentsBase

10. FunctionSetAssignments

11. FunctionSetAssignmentsList

12. Condition

13. SubscriptionBase

14. Subscription

15. SubscriptionList

16. Notification

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

38

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

17. NotificationList

18. DERControlResponse

19. FlowReservationResponseResponse

20. AppliedTargetReduction

21. DrResponse

22. PriceResponse

23. Response

24. ResponseList

25. ResponseSet

26. ResponseSetList

27. TextResponse

28. Time

29. DeviceInformation

30. DRLCCapabilities

31. SupportedLocale

32. SupportedLocaleList

33. PowerStatus

34. PowerSourceType

35. PEVInfo

36. IEEE_802_15_4

37. IPAddr

38. IPAddrList

39. IPInterface

40. IPInterfaceList

41. LLInterface

42. LLInterfaceList

43. loWPAN

44. Neighbor

45. NeighborList

46. RPLInstance

47. RPLInstanceList

48. RPLSourceRoutes

49. RPLSourceRoutesList

50. LogEvent

51. LogEventList

52. Configuration

53. PowerConfiguration

54. PriceResponseCfg

55. PriceResponseCfgList

56. TimeConfiguration

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

39

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

57. File

58. FileList

59. FileStatus

60. LoadShedAvailabilityList

61. ApplianceLoadReduction

62. DemandResponseProgram

63. DemandResponseProgramList

64. DutyCycle

65. EndDeviceControl

66. EndDeviceControlList

67. LoadShedAvailability

68. Offset

69. SetPoint

70. TargetReduction

71. MeterReading

72. MeterReadingList

73. Reading

74. ReadingList

75. ReadingSet

76. ReadingSetList

77. ReadingType

78. UsagePoint

79. UsagePointList

80. ConsumptionTariffInterval

81. ConsumptionTariffIntervalList

82. CostKindType

83. EnvironmentalCost

84. RateComponent

85. RateComponentList

86. TariffProfile

87. TariffProfileList

88. TimeTariffInterval

89. TimeTariffIntervalList

90. MessagingProgram

91. MessagingProgramList

92. PriorityType

93. TextMessage

94. TextMessageList

95. BillingPeriod

96. BillingPeriodList

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

40

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

97. BillingMeterReadingBase

98. BillingReading

99. BillingReadingList

100. BillingReadingSet

101. BillingReadingSetList

102. Charge

103. ChargeKind

104. CustomerAccount

105. CustomerAccountList

106. CustomerAgreement

107. CustomerAgreementList

108. HistoricalReading

109. HistoricalReadingList

110. ProjectionReading

111. ProjectionReadingList

112. TargetReading

113. TargetReadingList

114. ServiceSupplier

115. ServiceSupplierList

116. AccountBalance

117. AccountingUnit

118. CreditRegister

119. CreditRegisterList

120. Prepayment

121. PrepaymentList

122. PrepayModeType

123. PrepayOperationStatus

124. ServiceChange

125. SupplyInterruptionOverride

126. SupplyInterruptionOverrideList

127. CreditStatusType

128. CreditTypeType

129. CreditTypeChange

130. ServiceStatusType

131. RequestStatus

132. FlowReservationRequest

133. FlowReservationRequestList

134. FlowReservationResponse

135. FlowReservationResponseList

136. DefaultDERControl

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

41

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

137. FreqDroopType

138. DER

139. DERList

140. DERSettings

141. DERType

142. DERAvailability

143. DERCapability

144. DERControlBase

145. DERControl

146. DERControlList

147. DERControlType

148. DERCurve

149. CurrentDERProgramLink

150. DERCurveList

151. CurveData

152. DERCurveType

153. DERProgram

154. DERProgramList

155. DERStatus

156. DERUnitRefType

157. CurrentRMS

158. FixedPointType

159. UnsignedFixedPointType

160. ActivePower

161. AmpereHour

162. ApparentPower

163. ReactivePower

164. PowerFactor

165. FixedVar

166. WattHour

167. VoltageRMS

168. ConnectStatusType

169. InverterStatusType

170. LocalControlModeStatusType

171. ManufacturerStatusType

172. OperationalModeStatusType

173. StateOfChargeStatusType

174. StorageModeStatusType

175. AccountBalanceLink

176. ActiveBillingPeriodListLink

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

42

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

177. ActiveCreditRegisterListLink

178. ActiveDERControlListLink

179. ActiveEndDeviceControlListLink

180. ActiveFlowReservationListLink

181. ActiveProjectionReadingListLink

182. ActiveSupplyInterruptionOverrideListLink

183. ActiveTargetReadingListLink

184. ActiveTextMessageListLink

185. ActiveTimeTariffIntervalListLink

186. AssociatedDERProgramListLink

187. AssociatedUsagePointLink

188. BillingPeriodListLink

189. BillingReadingListLink

190. BillingReadingSetListLink

191. ConfigurationLink

192. ConsumptionTariffIntervalListLink

193. CreditRegisterListLink

194. CustomerAccountLink

195. CustomerAccountListLink

196. CustomerAgreementListLink

197. DemandResponseProgramLink

198. DemandResponseProgramListLink

199. DERAvailabilityLink

200. DefaultDERControlLink

201. DERCapabilityLink

202. DERControlListLink

203. DERCurveLink

204. DERCurveListLink

205. DERLink

206. DERListLink

207. DERProgramLink

208. DERProgramListLink

209. DERSettingsLink

210. DERStatusLink

211. DeviceCapabilityLink

212. DeviceInformationLink

213. DeviceStatusLink

214. EndDeviceControlListLink

215. EndDeviceLink

216. EndDeviceListLink

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

43

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

217. FileLink

218. FileListLink

219. FileStatusLink

220. FlowReservationRequestListLink

221. FlowReservationResponseListLink

222. FunctionSetAssignmentsListLink

223. HistoricalReadingListLink

224. IPAddrListLink

225. IPInterfaceListLink

226. LLInterfaceListLink

227. LoadShedAvailabilityListLink

228. LogEventListLink

229. MessagingProgramListLink

230. MeterReadingLink

231. MeterReadingListLink

232. MirrorUsagePointListLink

233. NeighborListLink

234. NotificationListLink

235. PowerStatusLink

236. PrepaymentLink

237. PrepaymentListLink

238. PrepayOperationStatusLink

239. PriceResponseCfgListLink

240. ProjectionReadingListLink

241. RateComponentLink

242. RateComponentListLink

243. ReadingLink

244. ReadingListLink

245. ReadingSetListLink

246. ReadingTypeLink

247. RegistrationLink

248. ResponseListLink

249. ResponseSetListLink

250. RPLInstanceListLink

251. RPLSourceRoutesListLink

252. SelfDeviceLink

253. ServiceSupplierLink

254. SubscriptionListLink

255. SupplyInterruptionOverrideListLink

256. SupportedLocaleListLink

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

44

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

257. TargetReadingListLink

258. TariffProfileLink

259. TariffProfileListLink

260. TextMessageListLink

261. TimeLink

262. TimeTariffIntervalListLink

263. UsagePointLink

264. UsagePointListLink

265. IdentifiedObject

266. Link

267. List

268. ListLink

269. Resource

270. RespondableIdentifiedObject

271. RespondableResource

272. RespondableSubscribableIdentifiedObject

273. SubscribableIdentifiedObject

274. SubscribableList

275. SubscribableResource

276. Error

277. Event

278. EventStatus

279. RandomizableEvent

280. AccumulationBehaviourType

281. ApplianceLoadReductionType

282. CommodityType

283. ConsumptionBlockType

284. CurrencyCode

285. DataQualifierType

286. DateTimeInterval

287. DeviceCategoryType

288. DstRuleType

289. FlowDirectionType

290. KindType

291. LocaleType

292. mRIDType

293. OneHourRangeType

294. PENType

295. PerCent

296. PhaseCode

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

45

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

297. PINType

298. PowerOfTenMultiplierType

299. PrimacyType

300. RealEnergy

301. RoleFlagsType

302. ServiceKind

303. SFDIType

304. SignedPerCent

305. SignedRealEnergy

306. TimeOffsetType

307. TimeType

308. TOUType

309. UnitType

310. UnitValueType

311. UomType

312. VersionType

313. MirrorMeterReading

314. MirrorMeterReadingList

315. MeterReadingBase

316. MirrorReadingSet

317. MirrorUsagePoint

318. MirrorUsagePointList

319. ReadingBase

320. ReadingSetBase

321. UsagePointBase

5.1.2 Abstract Device
The AbstractDevice schema includes fields and attributes that describe basic information
about a device without going into the specifics of a particular device category. It serves as a
template that can be extended and specialized to represent various types of devices, such
as meters, inverters, appliances, and more. It's a way to provide common attributes for
devices while allowing for flexibility in representing different device types.

The main purpose of the AbstractDevice schema is to capture essential information that can
be shared across different devices in a standardized way. This promotes interoperability and
uniformity in the representation of devices within a smart energy management system.

In the following four subchapters, AbstractDevice schema is represented in XML format with
its sample and in JSON format also with its sample.

5.1.2.1 IEEE2030.5 XML schema
In the following XML, we can observe the structure for AbstractDevice as defined in the
sep.xsd file from IEEE2030.5.

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

46

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

<xs:complextype xmlns:xs="http://www.w3.org/2001/XMLSchema"

name="AbstractDevice">
 <xs:annotation>
 <xs:documentation>The EndDevice providing the resources available

within the DeviceCapabilities.</xs:documentation>
 </xs:annotation>
 <xs:complexcontent>
 <xs:extension base="SubscribableResource">
 <xs:sequence>
 <xs:element name="ConfigurationLink" type="ConfigurationLink"

minOccurs="0" maxOccurs="1"/>
 <xs:element name="DERListLink" type="DERListLink"

minOccurs="0" maxOccurs="1"/>
 <xs:element name="DeviceInformationLink"

type="DeviceInformationLink" minOccurs="0" maxOccurs="1"/>
 <xs:element name="DeviceStatusLink" type="DeviceStatusLink"

minOccurs="0" maxOccurs="1"/>
 <xs:element name="FileStatusLink" type="FileStatusLink"

minOccurs="0" maxOccurs="1"/>
 <xs:element name="IPInterfaceListLink"

type="IPInterfaceListLink" minOccurs="0" maxOccurs="1"/>
 <xs:element name="lFDI" minOccurs="0" maxOccurs="1"

type="HexBinary160">
 <xs:annotation>
 <xs:documentation>Long form of device identifier. See the

Security section for additional details.</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="LoadShedAvailabilityListLink"

type="LoadShedAvailabilityListLink" minOccurs="0" maxOccurs="1"/>
 <xs:element name="loadShedDeviceCategory" minOccurs="0"

maxOccurs="1" type="DeviceCategoryType">
 <xs:annotation>
 <xs:documentation>This field is for use in devices that

can shed load. If you are a device that does not respond to

EndDeviceControls (for instance, an ESI), this field should not have

any bits set.</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="LogEventListLink" type="LogEventListLink"

minOccurs="0" maxOccurs="1"/>
 <xs:element name="PowerStatusLink" type="PowerStatusLink"

minOccurs="0" maxOccurs="1"/>
 <xs:element name="sFDI" minOccurs="1" maxOccurs="1"

type="SFDIType">
 <xs:annotation>
 <xs:documentation>Short form of device identifier, WITH

the checksum digit. See the Security section for additional

details.</xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:extension>
 </xs:complexcontent>
</xs:complextype>

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

47

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

5.1.2.2 Sample XML
In the following XML, we can observe the sample for AbstractDevice.

<abstractdevice>

 <configurationlink>

 <href>http://example.com/configuration</href>

 </configurationlink>

 <derlistlink>

 <href>http://example.com/derlist</href>

 </derlistlink>

 <deviceinformationlink>

 <href>http://example.com/deviceinfo</href>

 </deviceinformationlink>

 <devicestatuslink>

 <href>http://example.com/devicestatus</href>

 </devicestatuslink>

 <filestatuslink>

 <href>http://example.com/filestatus</href>

 </filestatuslink>

 <ipinterfacelistlink>

 <href>http://example.com/ipinterfaces</href>

 </ipinterfacelistlink>

 <lfdi>0123456789ABCDEF0123456789ABCDEF01234567</lfdi>

 <loadshedavailabilitylistlink>

 <href>http://example.com/loadshedavailability</href>

 </loadshedavailabilitylistlink>

 <loadsheddevicecategory>0001</loadsheddevicecategory>

 <logeventlistlink>

 <href>http://example.com/logevents</href>

 </logeventlistlink>

 <powerstatuslink>

 <href>http://example.com/powerstatus</href>

 </powerstatuslink>

 <sfdi>1234567890ABCDEF</sfdi>

</abstractdevice>

5.1.2.3 JSON schema
In the following JSON, we can observe the structure for AbstractDevice. It was obtained
from the XML schema.

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

48

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

{

 "$schema": "http://json-schema.org/draft-07/schema#",

 "definitions": {

 "Link": {

 "type": "object",

 "properties": {

 "href": {

 "type": "string",

 "format": "uri"

 }

 },

 "required": ["href"],

 "additionalProperties": false

 },

 "ListLink": {

 "type": "object",

 "properties": {

 "href": {

 "type": "string",

 "format": "uri"

 },

 "all": {

 "type": "integer",

 "minimum": 0

 }

 },

 "required": ["href"],

 "additionalProperties": false

 }

 },

 "title": "AbstractDevice",

 "type": "object",

 "properties": {

 "ConfigurationLink": {

 "$ref": "#/definitions/Link"

 },

 "DERListLink": {

 "$ref": "#/definitions/ListLink"

 },

 "DeviceInformationLink": {

 "$ref": "#/definitions/Link"

 },

 "DeviceStatusLink": {

 "$ref": "#/definitions/Link"

 },

 "FileStatusLink": {

 "$ref": "#/definitions/Link"

 },

 "IPInterfaceListLink": {

 "$ref": "#/definitions/ListLink"

 },

 "lFDI": {

 "type": "string",

 "pattern": "^[0-9A-F]{40}$"

 },

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

49

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

 "LoadShedAvailabilityListLink": {

 "$ref": "#/definitions/ListLink"

 },

 "loadShedDeviceCategory": {

 "type": "string",

 "pattern": "^[0-9A-F]{4}$"

 },

 "LogEventListLink": {

 "$ref": "#/definitions/ListLink"

 },

 "PowerStatusLink": {

 "$ref": "#/definitions/Link"

 },

 "sFDI": {

 "type": "string",

 "pattern": "^[0-9A-F]{16}$"

 }

 },

 "required": ["sFDI"],

 "additionalProperties": false

}

5.1.2.4 Sample JSON
In the following JSON, we can observe the sample for AbstractDevice.

{

 "ConfigurationLink": {

 "href": "http://example.com/configuration"

 },

 "DERListLink": {

 "href": "http://example.com/derlist"

 },

 "DeviceInformationLink": {

 "href": "http://example.com/deviceinfo"

 },

 "DeviceStatusLink": {

 "href": "http://example.com/devicestatus"

 },

 "FileStatusLink": {

 "href": "http://example.com/filestatus"

 },

 "IPInterfaceListLink": {

 "href": "http://example.com/ipinterfaces"

 },

 "lFDI": "0123456789ABCDEF0123456789ABCDEF01234567",

 "LoadShedAvailabilityListLink": {

 "href": "http://example.com/loadshedavailability"

 },

 "loadShedDeviceCategory": "0001",

 "LogEventListLink": {

 "href": "http://example.com/logevents"

 },

 "PowerStatusLink": {

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

50

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

 "href": "http://example.com/powerstatus"

 },

 "sFDI": "1234567890ABCDEF"

}

5.1.3 Event
The Event complex type is used to represent information about events within a smart energy
management system. Events could include various occurrences such as changes in device
status, measurements reaching certain thresholds, alarms, and other significant incidents.
The Event complex type provides a structured way to convey event-related data and
metadata.

In the following four subchapters, Event schema is represented in XML format with its
sample and in JSON format also with its sample.

5.1.3.1 IEEE2030.5 XML schema
In the following XML, we can observe the structure for Event as defined in the sep.xsd file
from IEEE2030.5.

<xs:complextype name="Event">

 <xs:annotation>

 <xs:documentation>An Event indicates information that applies to

a particular period of time. Events SHALL be executed relative to the

time of the server, as described in the Time function set section

11.1.</xs:documentation>

 </xs:annotation>

 <xs:complexcontent>

 <xs:extension base="RespondableSubscribableIdentifiedObject">

 <xs:sequence>

 <xs:element name="creationTime" minOccurs="1" maxOccurs="1"

type="TimeType">

 <xs:annotation>

 <xs:documentation>The time at which the Event was

created.</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="EventStatus" type="EventStatus"

minOccurs="1" maxOccurs="1"/>

 <xs:element name="interval" minOccurs="1" maxOccurs="1"

type="DateTimeInterval">

 <xs:annotation>

 <xs:documentation>The period during which the Event

applies.</xs:documentation>

 </xs:annotation>

 </xs:element>

 </xs:sequence>

 </xs:extension>

 </xs:complexcontent>

</xs:complextype>

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

51

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

5.1.3.2 Sample XML
In the following XML, we can observe the sample for Event.

<event>

 <creationtime>1677700000</creationtime>

 <eventstatus>

 <currentstatus>1</currentstatus>

 <datetime>1677701000</datetime>

 <potentiallysuperseded>false</potentiallysuperseded>

 </eventstatus>

 <interval>

 <duration>3600</duration>

 <start>1677700000</start>

 </interval>

</event>

5.1.3.3 JSON schema
In the following JSON, we can observe the structure for Event. It was obtained from the XML
schema.

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

52

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

{

 "$schema": "http://json-schema.org/draft-07/schema#",

 "definitions": {

 "TimeType": {

 "type": "integer",

 "description": "Time is a signed 64 bit value representing the

number of seconds since 0 hours, 0 minutes, 0 seconds, on the 1st of

January, 1970, in UTC, not counting leap seconds."

 },

 "EventStatus": {

 "type": "object",

 "properties": {

 "currentStatus": {

 "type": "integer",

 "enum": [0, 1, 2, 3, 4],

 "description": "Field representing the current status

type."

 },

 "dateTime": { "$ref": "#/definitions/TimeType" },

 "potentiallySuperseded": { "type": "boolean" },

 "potentiallySupersededTime": { "$ref":

"#/definitions/TimeType" },

 "reason": {

 "type": "string",

 "maxLength": 192,

 "description": "The Reason attribute allows a Service

provider to provide a textual explanation of the status."

 }

 },

 "required": ["currentStatus", "dateTime",

"potentiallySuperseded"],

 "additionalProperties": false

 },

 "DateTimeInterval": {

 "type": "object",

 "properties": {

 "duration": { "type": "integer", "minimum": 0 },

 "start": { "$ref": "#/definitions/TimeType" }

 },

 "required": ["duration", "start"],

 "additionalProperties": false

 }

 },

 "title": "Event",

 "type": "object",

 "properties": {

 "creationTime": { "$ref": "#/definitions/TimeType" },

 "EventStatus": { "$ref": "#/definitions/EventStatus" },

 "interval": { "$ref": "#/definitions/DateTimeInterval" }

 },

 "required": ["creationTime", "EventStatus", "interval"],

 "additionalProperties": false

}

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

53

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

5.1.3.4 Sample JSON
In the following JSON, we can observe the sample for Event.

{

 "creationTime": 1677700000,

 "EventStatus": {

 "currentStatus": 1,

 "dateTime": 1677701000,

 "potentiallySuperseded": false

 },

 "interval": {

 "duration": 3600,

 "start": 1677700000

 }

}

5.1.4 TimeConfiguration
The TimeConfiguration defines the time settings and configurations used within a smart
energy management system. It provides standardized elements to communicate information
related to time synchronization and management between devices, applications, and
services within the smart energy ecosystem.

In the following four subchapters, TimeConfiguration schema is represented in XML format
with its sample and in JSON format also with its sample.

5.1.4.1 IEEE2030.5 XML schema
In the following XML, we can observe the structure for TimeConfiguration as defined in the
sep.xsd file from IEEE2030.5.

<xs:complextype name="TimeConfiguration">

 <xs:annotation>

 <xs:documentation>Contains attributes related to the

configuration of the time service.</xs:documentation>

 </xs:annotation>

 <xs:sequence>

 <xs:element name="dstEndRule" minOccurs="1" maxOccurs="1"

type="DstRuleType">

 <xs:annotation>

 <xs:documentation>Rule to calculate end of daylight savings

time in the current year. Result of dstEndRule must be greater than

result of dstStartRule.</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="dstOffset" minOccurs="1" maxOccurs="1"

type="TimeOffsetType">

 <xs:annotation>

 <xs:documentation>Daylight savings time offset from local

standard time.</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="dstStartRule" minOccurs="1" maxOccurs="1"

type="DstRuleType">

 <xs:annotation>

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

54

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

 <xs:documentation>Rule to calculate start of daylight savings

time in the current year. Result of dstEndRule must be greater than

result of dstStartRule.</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="tzOffset" minOccurs="1" maxOccurs="1"

type="TimeOffsetType">

 <xs:annotation>

 <xs:documentation>Local time zone offset from UTCTime. Does

not include any daylight savings time offsets.</xs:documentation>

 </xs:annotation>

 </xs:element>

 </xs:sequence>

</xs:complextype>

5.1.4.2 Sample XML
In the following XML, we can observe the sample for TimeConfiguration.

<timeconfiguration>

 <dstendrule>02061F03</dstendrule>

 <dstoffset>3600</dstoffset>

 <dststartrule>02E10703</dststartrule>

 <tzoffset>-18000</tzoffset>

</timeconfiguration>

5.1.4.3 JSON schema
In the following JSON, we can observe the structure for TimeConfiguration. It was obtained
from the XML schema.

{

 "$schema": "http://json-schema.org/draft-07/schema#",

 "title": "TimeConfiguration",

 "type": "object",

 "properties": {

 "dstEndRule": {

 "type": "string",

 "pattern": "^[0-9A-Fa-f]{8}$"

 },

 "dstOffset": {

 "type": "integer"

 },

 "dstStartRule": {

 "type": "string",

 "pattern": "^[0-9A-Fa-f]{8}$"

 },

 "tzOffset": {

 "type": "integer"

 }

 },

 "required": ["dstEndRule", "dstOffset", "dstStartRule",

"tzOffset"],

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

55

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

 "additionalProperties": false

}

5.1.4.4 Sample JSON
In the following JSON, we can observe the sample for TimeConfiguration.

{

 "dstEndRule": "02061F03",

 "dstOffset": 3600,

 "dstStartRule": "02E10703",

 "tzOffset": -18000

}

5.1.5 ServiceChange
The ServiceChange structure specifies a change to the service status within a smart energy
management system. It's used to communicate alterations in the operational state of a
service, such as starting or stopping a particular service. The structure provides details
about the new status and the time at which the change is intended to take effect.

In the following four subchapters, ServiceChange schema is represented in XML format
with its sample and in JSON format also with its sample.

5.1.5.1 IEEE2030.5 XML schema
In the following XML, we can observe the structure for ServiceChange as defined in the
sep.xsd file from IEEE2030.5.

<xs:complextype name="ServiceChange">

 <xs:annotation>

 <xs:documentation>Specifies a change to the service

status.</xs:documentation>

 </xs:annotation>

 <xs:sequence>

 <xs:element name="newStatus" minOccurs="1" maxOccurs="1"

type="ServiceStatusType">

 <xs:annotation>

 <xs:documentation>The new service status, to take effect at

the time specified by startTime</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="startTime" minOccurs="1" maxOccurs="1"

type="TimeType">

 <xs:annotation>

 <xs:documentation>The date/time when the change is to take

effect.</xs:documentation>

 </xs:annotation>

 </xs:element>

 </xs:sequence>

</xs:complextype>

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

56

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

5.1.5.2 Sample XML
In the following XML, we can observe the sample for ServiceChange.

<servicechange>

 <newstatus>Connected</newstatus>

 <starttime>1681555200</starttime>

</servicechange>

5.1.5.3 JSON schema
In the following JSON, we can observe the structure for ServiceChange. It was obtained from
the XML schema.

{

 "$schema": "http://json-schema.org/draft-07/schema#",

 "title": "ServiceChange",

 "type": "object",

 "properties": {

 "newStatus": {

 "$ref": "#/definitions/ServiceStatusType"

 },

 "startTime": {

 "$ref": "#/definitions/TimeType"

 }

 },

 "required": ["newStatus", "startTime"],

 "definitions": {

 "ServiceStatusType": {

 "type": "string",

 "enum": ["Connected", "Disconnected", "Armed for Connect", "Armed

for Disconnect", "No Contactor", "Load Limited"]

 },

 "TimeType": {

 "type": "integer",

 "format": "int64"

 }

 },

 "additionalProperties": false

}

5.1.5.4 Sample JSON
In the following JSON, we can observe the sample for ServiceChange.

{

 "newStatus": "Connected",

 "startTime": 1681555200

}

5.1.6 Error
The Error complex type is used to convey information about errors that occur when a request
cannot be completed successfully within a smart energy management system. The Error

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

57

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

complex type provides structured details about the nature of the error, facilitating better
diagnostics and understanding of the reason behind the failure.

In the following four subchapters, Error schema is represented in XML format with its sample
and in JSON format also with its sample.

5.1.6.1 IEEE2030.5 XML schema
In the following XML, we can observe the structure for Error as defined in the sep.xsd file
from IEEE2030.5.

<xs:complextype name="Error">

 <xs:annotation>

 <xs:documentation>Contains information about the nature of an

error if a request could not be completed

successfully.</xs:documentation>

 </xs:annotation>

 <xs:sequence>

 <xs:element name="maxRetryDuration" minOccurs="0" maxOccurs="1"

type="UInt16">

 <xs:annotation>

 <xs:documentation>Contains the number of seconds the client

SHOULD wait before retrying the request.</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="reasonCode" minOccurs="1" maxOccurs="1"

type="UInt16">

 <xs:annotation>

 <xs:documentation>Code indicating the reason for failure. 0 -

Invalid request format

1 - Invalid request values (e.g. invalid threshold values)

2 - Resource limit reached

3 - Conditional subscription field not supported

4 - Maximum request frequency exceeded

All other values reserved</xs:documentation>

 </xs:annotation>

 </xs:element>

 </xs:sequence>

</xs:complextype>

5.1.6.2 Sample XML
In the following XML, we can observe the sample for Error.

<error>

 <maxretryduration>60</maxretryduration>

 <reasoncode>2</reasoncode>

</error>

5.1.6.3 JSON schema
In the following JSON, we can observe the structure for Error. It was obtained from the XML
schema.

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

58

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

{

 "$schema": "http://json-schema.org/draft-07/schema#",

 "title": "Error",

 "type": "object",

 "properties": {

 "maxRetryDuration": {

 "type": "integer",

 "minimum": 0

 },

 "reasonCode": {

 "type": "integer",

 "enum": [0, 1, 2, 3, 4]

 }

 },

 "required": ["reasonCode"],

 "additionalProperties": false

}

5.1.6.4 Sample JSON
In the following JSON, we can observe the sample for Error.

{

 "maxRetryDuration": 60,

 "reasonCode": 2

}

5.2 Supported message structures and formats

5.2.1 Supported message structures and formats in client/server

Both client and server will support JSON/XML message structure and format. Additionally, a
header with additional information about device, in type of JSON/XML field will be added to
the message.

5.2.2 Supported message structures and formats in legacy protocol converter

Legacy protocol converter will support JSON/XML message structure and format.
Additionally, a header with additional information about the device, in type of JSON/XML field
will be added to the message. The legacy protocol converter will also be able to receive and
send Modbus messages from/to device. When communicating with the server, device ID will
be sent in the header.

5.3 Fault and exception messages

Structure of fault and exception messages is in JSON format and is following:

{

 "error": "error description",

 "error_code": 2023,

 "ieee2030.5 error": error from Error

structure defined by IEEE2030.5

}

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

59

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

6 Message transformation and configuration
6.1 Transformation framework

This part is necessary only for legacy protocol converter as it will be available to existing
devices with multiple formats of messages.

The transformation will be done as defined in the configuration file in the YAML format by the
user. User must map every message, that is sent from/to device, to the correct IEEE2030.5
structure. It is expected that users will have knowledge about the IEEE2030.5.

Each message to NATS/IEEE2030.5 can be sent in XML or JSON format, depending on which
the user specified.

6.2 Configuration options
The configuration file will be in YAML format. Each user will have to specify mappings from
their custom messages.

General structure of the configuration file is following:

lpc:

 transformations:

 - name: string

 description: string

 deviceMqttTopic: string

 modBusInFC: string

 modBusOutFC: string

 natsSubject: string

 fromDeviceFormat: XML/JSON/Modbus

 forwardFormat: XML/JSON

 outgoingMapping: ''

 incomingMapping: ''

Within the transformations section, you can include multiple transformations as it is
structured as a list.

Each transformation must include the following elements: name, description,
deviceMqttTopic or modBusInFC and modBusOutFC, natsSubject, fromDeviceFormat,
forwardFormat, outgoingMapping, and incomingMapping.

The name and description fields should provide a brief name and description of the
transformation to enhance understanding for others.

Depending on the connection type from the legacy protocol converter to the device, a
transformation must include either deviceMqttTopic, which specifies the MQTT topic over
which this message will be sent, or modBusInFC, which identifies the messages to be
transformed based on the incoming function code.

The natsSubject attribute indicates the subject to which the legacy protocol converter should
forward this message.

It is essential to specify the format of both incoming and outgoing messages. For incoming
messages, format options include XML, JSON, or Modbus. For outgoing messages, the format
options are XML or JSON. The attribute fromDeviceFormat can be omitted if attributes
modBusInFC and modBusOutFC are present. Both function codes are decimal.

Each field's mapping is performed using the following format:

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

60

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

XML:

<mapping>

 <path type=""></path>

 <values>[]</values>

 <pattern></pattern>

</mapping>

JSON:

"mapping": {

 "path": "",

 "type": "",

 "values": [],

 "pattern”: ""

}

The path attribute instructs the mapper about the location of the value within the JSON object
or XPath. The type attribute specifies the data type of the value, such as datetime, integer,
string, date, etc.

The values and pattern attributes are used based on the specific use case. If a value can be
represented by multiple different values, then values must be defined to indicate which
IEEE2030.5 value this corresponds to.

The pattern attribute is exclusively used with values of type date and datetime. It specifies
the pattern of the outgoing value, ensuring it can be correctly interpreted. If it is used in the
incoming message, then it will be mapped to this patttern and sent to the device.

$timestamp keyword is reserved and it indicates that here it should be filled with the
timestamp of now.

6.3 Transforming MQTT to NATS/IEEE2030.5
The transformation framework will support incoming messages in both XML and JSON
formats. XML message transformations will be carried out using XPath, while JSON message
transformations will involve accessing JSON objects, following standard practices.

An example of an incoming message in XML format, which will be used to demonstrate the
transformation to the Event structure, is as follows:

<customevent>

 <datetime>28-08-2023 12:00:35</date>

 <status>active</status>

 <start>28-08-2023</start>

 <duration>900</duration>

</customevent>

For legacy protocol converter to transform this to the Event structure, following
configuration can be used:

lpc:

 transformations:

 - name: Transformation to IEEE2030.5 Event in XML format

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

61

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

 description: Transformation that maps from custom event to

IEEE2030.5 Event structure in XML format

 deviceMqttTopic: device2.event

 natsSubject: device2.event

 fromDeviceFormat: XML

 forwardFormat: XML

 outgoingMapping:

 '<event>

 <creationtime>$timestamp</creationtime>

 <eventstatus>

 <currentstatus>

 <mapping>

 <path type="integer">/customevent/status</path>

 <values>["scheduled", "active", "cancelled",

"cancelled_with_r", "superseded"]</values>

 </mapping>

 </currentstatus>

 <datetime>

 <mapping>

 <path type="datetime">/customevent/datetime</path>

 <pattern>DD-MM-YYYY HH:mm:ss</values>

 </mapping>

 </datetime>

 <potentiallysuperseded></potentiallysuperseded>

 </eventstatus>

 <interval>

 <duration>

 <mapping>

 <path type="integer">/customevent/duration</path>

 </mapping>

 </duration>

 <start>

 <mapping>

 <path type="date">/customevent/start</path>

 <pattern>DD-MM-YYYY</pattern>

 </mapping>

 </start>

 </interval>

 </event>'

 incomingMapping:

 '<customevent>

 <date>

 <mapping>

 <path type="datetime">/event/eventstatus/datetime</path>

 <pattern>DD-MM-YYYY HH:mm:ss</pattern>

 </mapping>

 </date>

 <status>

 <mapping>

 <path

type="integer">/event/eventstatus/currentstatus</path>

 <values>["scheduled", "active", "cancelled",

"cancelled_with_r", "superseded"]</values>

 </mapping>

 </status>

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

62

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

 <start>

 <mapping>

 <path type="date">/event/interval/start</path>

 <pattern>DD-MM-YYYY</pattern>

 </mapping>

 </start>

 <duration>

 <mapping>

 <path type="integer">/event/interval/duration</path>

 </mapping>

 </duration>

 </customevent>'

We can observe a transformation process from customevent to Event and then back from
Event to customevent. Each path contains the XPath to extract the value from customevent.
XPath is used here because the incoming message is in XML format.

To transform the datetime attribute from customevent, we define the pattern of the incoming
date using the pattern attribute. This allows us to perform the transformation correctly.

For the status attribute, it's essential to specify the values that this attribute can assume.
These values should align with the IEEE2030.5 possible event statuses, maintaining the same
order. The status type is integer, as per the enumerated enum in the IEEE2030.5
specifications. This mapping will correspond to the index in the array. The IEEE2030.5 values
it must map to are: 0 = Scheduled, 1 = Active, 2 = Cancelled, 3 = Cancelled with Randomization
and 4 = Superseded.

The duration attribute of customevent is mapped as is, without the need for a pattern or
values attribute since none are present.

For transforming from JSON or to JSON is very similar, here it is shown how to just
transform attribute datetime from customevent from XML format to JSON and from JSON to
XML:

…

"EventStatus": {

…

 "dateTime": {

 "mapping": {

 "path": "/customevent/datetime",

 "type": "datetime",

 "pattern": "DD-MM-YYYY HH:mm:ss"

 }

 }

…

}

…

And this is how to transform from JSON back to XML.

<customevent>

 <date>

 <mapping>

 <path type="date">EventStatus.dateTime</path>

 <pattern>DD-MM-YYYY HH:mm:ss</pattern>

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

63

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

 </mapping>

 </date>

...

</customevent>

6.4 Transforming Modbus to NATS/IEEE2030.5
When forwarding messages from device and sending messages to device, users must specify
which bytes of the Modbus message map to which field of the IEEE2030.5 structure. When
legacy protocol converter sends the message back to the device, it will automatically append
device ID and modBusOutFC from the configuration file.

For outgoing messages users must define which bytes map to which value in the IEEE2030.5
structure. As for the incomingMessages, users must define to which byte do values from
IEEE2030.5 map.

lpc:

 transformations:

 - name: Modbus transformation to IEEE2030.5 Event in JSON

format

 description: Transformation that maps from Modbus to

IEEE2030.5 Event structure in XML format

 modBusInFC: 03

 modBusOutFC: 15

 natsSubject: device2.event

 forwardFormat: XML

 outgoingMapping:

 '<event>

 <creationtime>$timestamp</creationtime>

 <eventstatus>

 <currentstatus>

 <mapping>

 <path type="integer">[4-5]</path>

 </mapping>

 </currentstatus>

 <datetime>

 <mapping>

 <path type="datetime">[5-6]</path>

 </mapping>

 </datetime>

 <potentiallysuperseded></potentiallysuperseded>

 </eventstatus>

 <interval>

 <duration>

 <mapping>

 <path type="integer">[6-7]</path>

 </mapping>

 </duration>

 <start>

 <mapping>

 <path type="date">[7-8]</path>

 </mapping>

 </start>

 </interval>

 </event>'

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

64

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

 incomingMapping:

 '000A04{

 "mapping": {

 "path": "/event/eventstatus/currentstatus",

 "type": "integer"

 }

 },

 {

 "mapping": {

 "path": "/event/eventstatus/datetime",

 "type": "long"

 }

 },

 {

 "mapping": {

 "path": "/event/integer/duration",

 "type": "integer"

 }

 },

 {

 "mapping": {

 "path": "/event/integer/start",

 "type": "long"

 }

 }'

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

65

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

7 Software architecture and Development Methodology
7.1 Software architecture description

Software architecture of client/server and legacy protocol converter can be seen in Figure
32.

In client/server architecture, the client library, which will be a separate Java package, will
be included directly into the client firmware. An additional Java implementation will be
provided, but this can also be implemented in a variety of programming languages.

Into the EMS, either the Java library will be included, or the Java library will be packaged as
a separate microservice, that will communicate with EMS over API.

On Figure 32 high-level software architecture for the client/server can be seen.

Figure 32: High-level software architecture for the client/server.

In legacy protocol converter architecture, the legacy protocol converter microservice will be
included inside the container, virtual machine or IoT device.

On Figure 33, high-level software architecture for the legacy protocol converter can be seen.

Figure 33: High-level Software architecture for the legacy protocol converter.

7.2 Build and deployment options
Flexibility is important when it comes to deploying solutions. That's why each of the solutions
has the option to be deployed as:

• Preconfigured Docker image
• Custom build Docker image
• Prebuilt JAR file
• Custom built JAR file
• Java classes using a JVM

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

66

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

• For client/server, Java library can be added to existing Device or EMS system

This allows users to choose the deployment method that best suits their needs, whether they
prefer the convenience of a containerized environment or the flexibility of a standalone JAR
file. Client, server, and legacy protocol converter can all be deployed as Docker containers
and JAR files. Additionally, users can create a custom build from the existing project,
allowing them to tailor the solutions to meet their specific requirements.

7.3 Container support on different platforms
In addition to providing flexibility in deployment methods, the solutions also offer support for
various platforms and architectures. The containers are designed to run on a wide range of
devices, including those with ARM processors. This means that users can deploy the
solutions on everything from small, low-power edge devices to powerful servers. The ability
to run the containers on devices with ARM processors is particularly useful for organizations
that require edge computing capabilities. By deploying the solutions on devices like smart
sensors, IoT gateways, and other specialized hardware, users can take advantage of local
processing power and reduce the need for data transmission to the cloud. Supporting
multiple platforms and architectures also makes it easier for users to integrate our solutions
into their existing infrastructure.

7.4 Microservice architecture
Client, server and legacy protocol converter will follow microservice architecture. The
client/server and the legacy protocol converter will be developed using standard Java SE in
a lightweight, microservice-oriented approach. A Microprofile-compliant microservice
framework will be used.

7.5 Programming language and NATS libraries
Project will use Java version 21 (LTS) with OpenJDK 21. It will use NATS library from NATS
available here: https://github.com/nats-io/nats.java

7.6 Security
All communication over NATS and MQTT will be secured using TLS and SSL.

7.7 Development methodology
In this project, the Agile approach will be used. It is a software development methodology
that emphasizes flexibility, collaboration, and customer-centricity to create high-quality
software in a more iterative and adaptive manner. Unlike traditional waterfall methodologies
that follow a linear sequence of phases, Agile methodologies embrace change and prioritize
delivering functional increments of the software product at shorter intervals. This allows for
quicker feedback, continuous improvement, and the ability to respond effectively to evolving
requirements.

https://github.com/nats-io/nats.java

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

67

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

8 Software and test procedures requirements

8.1 Beyond state of the Art (from the GA)
The technical advances are: (a) protocol based on the IEEE 2030.5 standard or similar,
supported by the latest trends and practical experiences from USA and Australia and aligned
with EU InterConnect H2020 project (b) use of connective technology that powers modern
distributed systems (e.g., NATS) allowing for effortless M:N connectivity, wide deployment,
real-time data exchange and strong security; (c) implementation of connected data
Associated with document Ref. Ares(2022)8566949 - 09/12/2022 InterSTORE: Interoperable
open-source tools to enable hybridisation, utilisation, and monetisation of storage flexibility
11 spaces to increase user awareness and acceptance of hybrid solutions for the proposed
use cases by valorizing data.

8.2 Description of task T1.3 (from the GA)
This task will specify the tools to replicate, adapt, and improve interoperable open-source
software to integrate hybrid energy storage systems (HESS). The specification of the tools
will foresee monitoring, control and management of the assets and seamless contact with
hierarchical structures, such as aggregators and system operators. The specifications will
address the following: i) interoperable client/server for distributed energy storage; ii) legacy
systems protocol converter; and iii) testing procedures and software tools. The task will
focus its attention on the available resources on IEEE2030.5 (such as in GitHub and support
documentation). In this task the documentation of the tools will be prepared as a basis for
WP2 implementation. Aspects, such as technology transfer to organizations and equipment
manufactures for easiness to installation will be addressed as well. It will propose evaluation
metrics for the tool’s development, implementation and performance. The tools will be
categorized by final equipment use and (client) and system operator or aggregator use
(Server) or other similar hierarchical structure. T1.3 will foresee the requirement to integrate
legacy systems, which will be fully developed and realized in WP2.

8.3 Implementation approach for a generalized interface (from the GA)
The definition of the aforementioned standard leaves still quite some flexibility on how the
actual software could be implemented. On the other hand there are available open-source
initiatives that can be considered a good starting point such as OpenFMB. OpenFMB has been
implemented with the main purpose to integrate a set of already available standards such as
CIM and IEC61850. Other relevant open-source initiatives such as OpenLEADR, FledgePower
both coming from the Linux Foundation Energy are also relevant in this context. Some
standards are also already quite relevant in the sector such as MODBUS. Furthermore,
significant work has been performed within the project INTERCONNECT, particularly at the
level of data modeling. To maximize the impact, InterSTORE will map its requirements to this
set of available solutions creating a middleware that starting from enriching data modeling
for hybrid storage is flexible enough to interface a variety of data protocol as envisioned with
the FledgePower approach.

With this context in mind, the specification of testing procedures and software tools will be
based on the available resources, which can be roughly grouped into three categories, which
are explained in the following subsections.

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

68

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

9 Proposed methodology for testing the
interoperability software

The need for architecture arises because the IEEE 2030.5 design is based on a client-server
model. Due to this, it is imperative to address both the client (Test Device) and the server
(EMS), which are outlined in the architecture. This architecture is divided into two
subsections: 9.1.1 and 9.1.2. The former represents the Device (IEEE 2030.5 client), while the
latter describes the EMS, where the server houses the IEEE 2030.5 resources.

It's important to note that the architecture will be subject to flexibility and change because
the objectives to be achieved are grounded in innovative practices. These practices refer
specifically to the incorporation of a publish-subscribe model. Consequently, the testing will
address not only the client-server model but also an event-driven architecture.

To summarize, there may be new components added or existing ones removed if they seem
redundant when in the project it will be finally fixed.

Section 9.2 describes the CSIP smart inverter profile. This was selected because the
specifications outlined in Work Package 1.3 are to be implemented in Work Package 2.3. This
package explicitly states that the CSIP smart inverter profile can serve as an example or
guideline, to be followed in conjunction with SunSpec testing procedures. For this reason,
it’s crucial to mention some of the core functionalities that need testing in IEEE 2030.5.

Section 9.3 illustrates what the outcomes should resemble. The payload, formatted in XML,
must be validated or verified to ensure it behaves according to the expected results. While
Section 9.2 specifies the core function sets that require testing, Section 9.3 details the
potential outcomes and describes how data is exchanged between the client and server.

Transitioning to Section 9.4, this part elucidates the testing practices to be adopted,
referencing common methodologies prevalent in the field. Each test strategy is
interconnected with other testing methods, either directly or indirectly, to fulfill the testing
requirements comprehensively.

Finally, Section 9.5 outlines the specific testing procedures, detailing how we assess certain
features, function sets, or resources within an IEEE 2030.5 framework.

9.1 Testing architecture
One of the most important functionalities of the testing tools is payload validation. This is

very relevant in the context of IEEE 2030.5 for both client and server. This focus makes the

testing tools independent on the architecture and corresponding transport technology of the

client and server tools. In this way, many solutions based on the IEEE 2030.5 standards can

be tested, not only the ones developed in the InterSTORE project. Furthermore, the

architecture and transport rely, in many cases and in the InterSTORE case, in already

established tools and protocols like NATS, which are assumed to be already tested for

supporting different features including SSL security, data integrity, etc. This means that the

most important part for the development of IEEE 2030.5 applications for DER interoperability

systems is the communication between the EMS and DER devices to achieve scalability,

interoperability, security and flexibility.

A significant detail involves ensuring that resources or features are registered on a server,
a process highlighted in the SunSpec documentation. This registration enables EMS to
maintain a record of IEEE 2030.5 devices, streamlining management and coordination. Given
the broad and complex nature of testing IEEE 2030.5 devices, the InterSTORE approach

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

69

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

initiates mock testing, which entails simulating the actual device's functionalities. This
strategy ensures the device operates as anticipated in real-world scenarios.

In the realm of the Java programming language, tools like Cucumber and Mockito are
instrumental in facilitating this mocking and end to end testing functionality. Mocking
transcends mere testing, extending to encompass the integration of the client (IEEE 2030.5
device) and server (DER server or EMS), enhancing the efficacy and coherence of the system
interactions.

One notable feature of the IEEE 2030.5 protocol is its support for both event-driven and
request-response architectures. This dual compatibility makes a hybrid architecture model
an optimal choice for implementing the testing strategy. The event-driven architecture
primarily hinges on conditions and timing, often referred to as state changes, triggers, or
updates. In this context, the concepts of publishing, subscribing, and notifications are
interchangeably employed between message brokers of the publisher and subscriber.

Conversely, the request-response architecture is predominantly utilized within the client-
server model. As previously indicated, the proposed testing procedure leans on the CSIP
(Common Smart Inverter Profile) specification, with its corresponding testing procedures
elaborated in the SunSpec documentation. The InterSTORE testing procedures will cater to
both request-response and event-driven architectures, ensuring a comprehensive
evaluation. In the scenario involving request-response, the test will involve a mocked End
Device sending a request using the NATS request-response technique. The responder in this
instance will be a Mock Server, akin to the utility server outlined in the project's CSIP, while
the requester is portrayed as a mocked End Device. This setup is depicted in the subsequent
Figure 34.

Figure 34: Interoperability Test tool Architecture.

Even though the IEEE 2030.5 Protocol can be addressed with a hybrid model architecture,
the NATS message technology supports the Request Reply pattern using its core
communication mechanism – publish and subscribe. The next subsections describe the
components of the testing architecture in more detail.

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

70

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

9.1.1 Test Device Overview

Figure 35: Interoperability Test tool (Client side) Architecture.

Mocked Object: This object represents the Test Device, which can be mocked using various
tools, depending on the chosen programming language. For instance, in Java, tools like JUnit
and Mockito are commonly used, while the pytest framework is available for Python. The
testing flow involves the Test Device publishing queries to the Mock Server via the NATS
system, after which the Mock Server, located within the EMS, responds to the queries.

The Test Device has numerous function sets (as per IEEE 2030.5) that need testing. Therefore,
it initiates a request to verify whether a specific function set is correctly implemented in the
Mock Server (as in IEEE 2030.5, all device capabilities are registered within the Mock Server).
The request comprises a URI, an HTTP method, and headers (if applicable). This payload is
then published under a NATS subject, with the critical requirement being that the message
adheres to the IEEE 2030.5 specifications.

Testing requests are conducted with stubbed data from the Test Device, varying based on the
specific test being performed. The essence of this process is to ensure that each function set
operates in strict accordance with the standards and expectations set forth by the IEEE
2030.5 protocol.

9.1.2 EMS Overview

Figure 36: Interoperability Test tool (Server side) Architecture.

NATS Adapter: The EMS is subscribed to the Subject. A NATS server is assumed to be set up
to route the traffic (which is not in the above figure but part of the NATS publish subscribe
system). After that, the adapter parses the message and will choose the corresponding test
case for the incoming message under a given Subject.

Mock Server: The mock server will run the mock test directed by the adapter and would
publish the response to the same Subject, and the Test Device would subscribe to the Subject
to receive the response and check it against the expected stubbed response data through
validation.

9.2 CSIP Smart Inverter Profile in IEEE 2030.5
The CSIP smart invertor profile describes the core functionalities to test in the context of
IEEE 2030.5. In IEEE 2030.5, a resource is a piece of information that a server exposes. These
resources are used to represent aspects of a physical asset such as a smart inverter,
attributes relating to the control of those assets (e.g., Volt-VAr curve), and general

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

71

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

constructs for organizing those assets. IEEE 2030.5 resources are defined in the IEEE 2030.5
XML schema and access methods are defined in the Web Application Description Language
(WADL). The schema is generally organized by Function Sets, a logical grouping of resources
that cooperate to implement IEEE 2030.5 features. IEEE 2030.5 provides a rich set of Function
Sets (e.g. Demand Response Load Control, Pricing, Messaging, Metering, etc.) to support a
variety of use cases.

The common functionalities to test are described below, according to the CSIP Smart Inverter
Profile.

9.2.1 Time
The utility server uses the Time function set to distribute the current time to clients. Time is
expressed in Coordinated Universal Time (UTC). Server event timing is based on this time
resource.

9.2.2 Device Capability
The utility server uses the Device Capability resource to enumerate the function sets it
supports. Clients use this function set to discover the location (URL) of the enumerated
function sets.

9.2.3 End Device
The EndDevice function set provides interfaces to exchange information related to specific
client or EndDevice.

9.2.4 Function Set Assignments (FSA)
The FunctionSetAssignments function set provides the mechanism to convey the grouping
assignments of each DER. Grouping with FSAs can be implemented in diverse ways.

9.2.5 Distributed Energy Resource (DER)
The DER function set provides an interface to manage Distributed Energy Resources (DER).
It is the primary function set for issuing DER controls.

9.3 CSIP IEEE 2030.5 Implementation

9.3.1 Device Capability
The DeviceCapability resource is the starting point for discovering resources on the server.
It provides links to the entry point of function sets supported by the server.

Figure 37: Example of DeviceCapability.

9.3.2 End Device
End Device (e.g. Smart Inverter) gets access to EndDevices through an EndDeviceListLink
that is available via the server’s DeviceCapability resource. The utility server should return
a custom EndDeviceList for each device making the request. If the querying device is a DER,
the server should return an EndDeviceList consisting of a single entry – the EndDevice
instance of the requesting DER.

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

72

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

Figure 38: Example of EndDevice.

9.3.3 Function set Assignment
The bellow response is the Function Set Assignment associated with the End Device.
Function Set Assignments are generic assignments upon function sets, the assignments can
be seen as configuration or kind of arrangement for associated programs or features.

Figure 39: Example of a FunctionSetAssignment.

9.3.4 Distributed Energy Resource (DER)
A DER function set is essentially a collection of specific capabilities or functionalities that a
DER device can perform. These can include functionalities like real-time measurement
reporting, reactive power control, demand response, or voltage regulation, among other
things. These function sets define what kind of operations a particular DER can support and
are designed to ensure interoperability within a smart grid environment. It’s designed to
independent of other entities such as End Device and FunctionSetAssignments and both can
inherit DER.

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

73

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

Figure 40: Example of a DER.

9.4 Testing Methodology

9.4.1 Mock Testing
In many scenarios, real-time data is unavailable to fulfil testing conditions. In these cases,
mock external dependencies can be employed as placeholders to mimic the behaviour of
actual objects. For example, consider an email service tasked with sending confirmation
messages upon user registration. During testing, it's impractical to send actual emails every
time a test case runs. Therefore, this service should be mocked during the user registration
testing phase. This approach ensures the system is tested under conditions that simulate the
expected outcome (i.e., sending an email) without executing the actual operation, thus
maintaining efficiency and preventing unnecessary actions during the testing process.

How Mock Testing fits in IEEE 2030.5 Context

Both the End Device and utility Server shall be mocked, with mocking aiming to emulate the
behaviour of the real device or object. In a mocked test, a "virtual device" is created with the
same functionalities as the real one. It allows to check if certain methods are called, with the
right arguments, in the right sequence, and so on. In essence the mocking allows to check
how the object under test interacts with its dependencies (i.e., did it make the right calls, in
the right order, with the right data).

9.4.2 Stubbing Testing
Stubbing is primarily employed to regulate the data or state returned by a method, thereby
facilitating the testing of the component utilizing this stubbed method or object. It enables
the isolation of the system under test from external dependencies by offering predetermined
responses. Typically, stubbing is indifferent to whether a method gets called; its main
function is to ensure a specified output is returned when the method is indeed invoked.

How Stubbing Testing fits in IEEE 2030.5 Context

Utility servers frequently interact with multiple EndDevices to orchestrate demand-response
events or inquire about the status of energy resources. Stubs can be instrumental in
simulating the anticipated states these end devices would return, thereby enabling an
emphasis on the analysis and decision-making processes within the utility server. End
devices, such as Smart Inverters, are required to comply with communication protocols
stipulated by IEEE 2030.5. Consequently, a stub can be configured to imitate the utility
server's varied responses to assorted requests originating from the end device. This strategy
permits concentrated testing on the end device's responses to a spectrum of valid or invalid
feedback.

9.4.3 Integration Testing
Integration testing examines the interactions between two or more components, ensuring
that various blocks of code work together as expected. This process is crucial when there's
a communication channel (such as APIs) or data exchange between different parts of the

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

74

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

code. The specific feature responsible for these operations must undergo thorough testing
to confirm its ability to seamlessly integrate multiple components. For example, consider a
scenario where you need to retrieve data from a database to execute your business logic.
Here, two distinct software components must integrate effectively. The medium or channel
(be it an API or a similar construct) facilitating this integration must be rigorously tested.
This crucial phase of the testing process is known as integration testing.

How Integration Test fits in IEEE 2030.5 Context

Integrated testing involves establishing a connection between various components, such as
the End Device and the Utility Server. In this scenario, the mocked End Device initiates a
request to the mocked Utility Server, which then executes the corresponding test case.
Subsequently, a response is sent back to the End Device for verification. In essence, the
interaction between the mocked End Device and Utility Server is facilitated in this manner,
ensuring that the components integrate and function cohesively.

9.4.4 End To End Testing
The purpose of end-to-end testing is to verify the flow of a message that complies with IEEE
2030.5 specifications. This process involves both a client and a server, with the client
initiating the message flow through a NATS system.

a. In the test scenario, the client is represented as a mock object with attributes such

as a URI, an HTTP method, and potentially a payload.

b. This mocked object is encapsulated within a NATS message and published from the

device.

c. To execute the above step, a connection to the NATS server is established, followed

by publishing the message to a specific subject.

d. Subsequently, the subscriber in the EMS receives the message and extracts its

contents, which may include the methods such as Get, Post, Put, Delete, URI, and any

payload. These contents are directed towards a specific server resource.

e. Upon identifying the resource and the required operation, the resources are

represented as stubs in inbuilt data structures like arrays or HashMaps. Then, the

server (which could be a mock server like WireMock or a real server) performs the

operation.

f. The outcome of this operation, often in XML format (especially in the case of a GET

operation), is then published back from the EMS under the same subject for the

subscriber present on the device side.

g. Finally, the received message is validated to ensure the output aligns with the

expected results.

All the above steps have to be automated using common software automating open-source
tools like cucumber, can trigger the actions one by one to complete the flow of testing, from
one end to other end. For example, the mock server has to be up before the testing start as
well as the NATS server connect operation has to be up before the flow of testing start i.e.
those will be considered as the initial set ups of the flow. The order of the flow will depend
on priority order of the test components to invoke, like mentioned above, servers should
start first.

9.5 How to test the IEEE 2030.5 Client
Testing the IEEE 2030.5 client consists of different steps. First, we need to specify the

purpose of the test, the setup, the detailed procedure, and define the pass and fail criteria of

the test.

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

75

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

Device capability is one of the resources that has to be present in the IEEE 2030.5 server.

For this reason, we describe the related testing process, as follows:

Purpose

The device capability test verifies that the IEEE 2030.5 Client can retrieve the Device

Capability (DCAP) resource from an IEEE 2030.5 server and use the resource information

provided.

Setup

Verify that a DeviceCapability resource exists on the Utility Server and include at least one
resource in the DeviceCapability resource.

Procedure

1. Perform a GET operation on DeviceCapability resource from the Server
2. Process the retrieved DeviceCapability resource and verify there is at least one

resource in the DeviceCapability.
3. Perform a GET operation on the found resource in step 2 and process the response

payload from the Server.

Pass/Fail Criteria

1. The IEEE 2030.5 Client requested and received the DeviceCapability resource from
the Server. The Server responded with 200 OK or other status to represent success
and returned a conformant payload for its DeviceCapability.

2. The IEEE 2030.5 Client found at least one resource included in the DeviceCapability.
The Server included at least one resource link in the returned DeviceCapability to the
Client.

3. The IEEE 2030.5 Client successfully received the payload of the found resource from
the DeviceCapability resource. The Server responded with 200 OK or other status to
represent success and returned a conformant payload for its resource.

The above-mentioned steps are presented in request response way, but the implementation
will incorporate the publish and subscribe mechanism. For simplicity, the example was
described in a similar way to a request/response architecture.

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

76

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

10 Open-source access on GitHub

10.1 GitHub repository
The source code for the Client/Server, Legacy protocol converter and testing procedures will
be available on GitHub. We have created a repository: https://github.com/Horizont-Europe-
Interstore

Within the repository there are currently four projects:

• Interoperable client/server for distributed energy storage
• Legacy system protocol converter
• Testing procedures and software tools
• Interoperable data spaces framework

The repository is currently private (by invitation only), but will be made public when the initial
version is developed.

A screenshot of the repository is shown in the figure below.

Figure 41: Open-source repository on GitHub.

10.2 Open-source license models
Project partners are currently discussing the possible OpenSource license models (as
described in the following sub-chapters) and which to use for the Client/Server, Legacy
protocol converter and testing tools source code. This decision needs to be made before the
GitHub repository is made public, sometime in March 2024.

10.2.1 MIT license
The MIT License (Massachusetts Institute of Technology License) is an open-source software
license widely used in the software development community. It is known for its simplicity
and permissiveness, making it one of the most popular licenses for open-source projects.
Here's a description of the key aspects of the MIT License:

1. Permission: The MIT License grants users permission to use, modify, distribute, and
sublicense the software, both in source code and binary form, without any

https://github.com/Horizont-Europe-Interstore
https://github.com/Horizont-Europe-Interstore

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

77

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

restrictions. This means that you can freely use, modify, and distribute software under
this license.

2. No Warranty: The license includes a disclaimer stating that the software is provided
"as is," without any warranties or guarantees. Users are using the software at their
own risk, and the original authors or copyright holders are not liable for any damages
or issues arising from its use.

3. License Notice: When you distribute or include the MIT-licensed code in your project,
you must include a copy of the MIT License text and copyright notice in your project's
documentation or source code. This notice typically includes the original copyright
holder's name and the license text.

4. Copyright Notice: The license includes a copyright notice, which typically states that
the original copyright holders own the copyright to the software. However, this
copyright notice doesn't restrict the use of the software as long as the license terms
are followed.

10.2.2 Apache License 2.0
The Apache License is a widely used open-source software license known for its balance
between promoting open collaboration and protecting contributors and users. It is often used
for projects hosted by the Apache Software Foundation (ASF), but it can also be applied to
other projects. Here's a description of the key aspects of the Apache License, version 2.0,
which is one of the most common versions:

1. Permissive and Business-Friendly: The Apache License is considered a permissive
license, similar to the MIT License. It allows users to freely use, modify, distribute,
and sublicense the software, both in source code and binary form, without imposing
stringent restrictions. This makes it business-friendly and suitable for commercial
applications.

2. Patent Grant: One unique feature of the Apache License is its patent grant clause.
Contributors grant a patent license to anyone who uses, modifies, or distributes the
software under the license. This provision helps protect users from potential patent
claims related to the software.

3. Attribution: While the license doesn't require the prominent display of a copyright
notice (as some other licenses do), it does require that a NOTICE file be included in
the distribution of the software. This file includes attribution to the original authors
and any third-party software dependencies that are redistributed with the project.

4. Modifications and Derivatives: Users are free to modify the software and create
derivative works. However, they must clearly indicate any changes made to the
original source code when distributing modified versions.

5. No Warranty: Similar to the MIT License, the Apache License includes a disclaimer
that the software is provided "as is" without any warranties or guarantees. Users
assume all risks when using the software.

6. Compatibility: The Apache License is known for its compatibility with other open-
source licenses. This means that you can often include Apache-licensed code in
projects with different licenses without significant conflicts.

7. Copyleft-like Provisions: While the Apache License is permissive, it includes
provisions that address the use of trademarks associated with the software and the
use of the software's name in derived works. These provisions help protect the
integrity of the project's branding.

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

78

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

(Apache, 2023)

10.2.3 GNU GPL license
The GNU General Public License (GPL) is a widely used open-source software license that
was created by the Free Software Foundation (FSF). It is known for its strong copyleft
provisions, which aim to ensure that software remains free and open throughout its lifecycle.
There are several versions of the GPL, with version 3 being the most recent and commonly
used. Here's an overview of the key characteristics of the GPL:

1. Copyleft: The GPL is often referred to as a "copyleft" license because it uses copyright
law to protect the freedom of the software. When a program is released under the
GPL, anyone who receives it also receives the rights to view, modify, and distribute
the source code. If you modify and distribute the software, you must make your
modified source code available under the same GPL terms. This ensures that
derivative works also remain open and free.

2. Free Software Philosophy: The GPL is rooted in the philosophy of free software, as
defined by the Free Software Foundation. It emphasizes the importance of software
being both "free as in freedom" (open source) and "free as in beer" (no cost). Users
have the freedom to run, study, modify, and distribute the software.

3. Distribution Obligations: If you distribute GPL-licensed software, whether in binary or
source code form, you are obligated to provide recipients with a copy of the GPL
license, the complete corresponding source code, and information on how to access
and obtain the source code. This ensures that recipients have the same rights you
had when you received the software.

4. Compatibility with Other GPL Versions: The GPL allows for compatibility with different
versions of the license. For example, you can often combine code released under GPL
version 3 with code released under GPL version 2, but the resulting work will be
subject to the terms of GPL version 3.

5. No Additional Restrictions: The GPL does not permit adding any further restrictions
on the software beyond those defined by the GPL itself. This means you can't impose
additional limitations on users beyond what the GPL allows.

6. Commercial Use: The GPL does not restrict commercial use of GPL-licensed
software. Companies can use, modify, and distribute GPL-licensed software in their
products, but they must still comply with the GPL's copyleft provisions when
distributing it.

7. No Warranty: Like many open-source licenses, the GPL includes a disclaimer stating
that the software is provided without any warranties. Users are encouraged to use
the software at their own risk.

8. Enforcement: The Free Software Foundation and other organizations actively enforce
the terms of the GPL. They may take legal action against individuals or entities that
violate the license by not providing source code when required.

Overall, the GPL is a powerful and influential open-source license that aims to protect and
promote the principles of software freedom. It has been instrumental in fostering a vibrant
and collaborative open-source software ecosystem. However, its strong copyleft provisions
may not be suitable for all projects, especially those that aim for more permissive licensing.
Developers and organizations should carefully consider the implications of the GPL before
choosing it as the license for their software.

(GNU, 2025)

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

79

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

10.2.4 Berkeley Software Distribution (BSD)
The Berkeley Software Distribution License, is a permissive open-source software license.
It originated at the University of California, Berkeley, and has been used for various software
projects, including the Berkeley Unix operating system (from which it gets its name) and
many other software applications and libraries.

The BSD License is characterized by its permissiveness and minimal restrictions on how the
software can be used, modified, and distributed. Here are some key points about the BSD
License:

1. Freedom to Use: The BSD License allows anyone to use the software for any purpose,
whether it's for personal, academic, commercial, or proprietary use.

2. Freedom to Modify: You are free to modify the source code of the software and adapt
it to your needs without any restrictions.

3. Freedom to Distribute: You can distribute both the original software and your modified
versions, either as open source or as part of proprietary software, without being
required to release the source code of your modifications.

4. Attribution: The BSD License typically requires that you include a copy of the original
copyright notice and the license text in your redistributions, whether they are binary
distributions or source code distributions.

5. No Warranty: The license usually includes a disclaimer stating that the software is
provided "as is" without any warranties or guarantees of fitness for a particular
purpose. Users and distributors are responsible for any risks associated with using
the software.

There are several variants of the BSD License, including the 2-Clause BSD License and the
3-Clause BSD License. The main difference between these variants is the presence of an
advertising clause in the original 4-Clause BSD License, which required that any advertising
materials that mentioned the use of the software must include an acknowledgment of its
origin. The 3-Clause BSD License and 2-Clause BSD License omit this advertising clause,
making them simpler and more widely used.

Overall, the BSD License is known for its flexibility and is often chosen for projects where
the primary goal is to maximize the potential for reuse and integration into both open-source
and proprietary software systems. However, it's essential to carefully read and understand
the specific terms of the BSD License used for a particular software project, as there may
be variations or additional conditions beyond the standard clauses.

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

80

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

11 Conclusion
In this specification we have provided an in-depth description and specification of the
interoperable client/server for distributed energy storage and the legacy systems protocol
converter.

Based on this specification, in WP2, open-sourced implementation of client/server and legacy
protocol converter will be developed. They will provide support for IEEE2030.5
communication between devices and EMS systems in original XML format, as well as
IEEE2030.5 in JSON format.

They will provide support for next generation NATS messaging as a communication protocol
between devices and EMS systems. This will enable message-driven, loosely coupled and
scalable communication platform, which will provide out-of-the-box support for computer
cloud environments.

Legacy protocol converter will provide support for ModBus and MQTT and provide a
transformation and configuration framework, which will allow simple and fully configurable
transformation of messages between ModBus, MQTT, NATS, IEEE2030.5 XML and JSON
messages.

We have specified the message exchange patterns, which the client/server and legacy
protocol converter will provide support for, including one-way, request/response and data
streaming patterns. We have also specified correlation, delivery options, subjects and
registration and authentication of devices. We have also defined fault and exception
signalling.

We have also provided the description of software architecture. Both the client/server and
legacy protocol converter follow the microservice architecture. They will be implemented in
Java using open source OpenJDK and provided as Docker containers, pre-built Java JAR
archives, or custom-built configurations for specific use cases. All software artifacts will be
available on GitHub.

The client/server and the legacy protocol converter, as defined in this specification, will be
developed within WP2 and used on several use cases within the InterSTORE project, including
hybridization of storage systems, integration on an inverter, flexibility monetization and
energy communities, home management system, and flexibility products management
platform.

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

81

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

12 REFERENCES
IEEE Standard for Smart Energy Profile Application Protocol. (2018). IEEE Std 2030.5-2018

(Revision of IEEE Std 2030.5-2013), 1-361. doi: 10.1109/IEEESTD.2018.8608044.

Modbus. (2023, September 25). Retrieved from Mobus: https://modbus.org/

MQTT. (2023, September 25). Retrieved from MQTT: https://mqtt.org/mqtt-specification/

GNU. (2025, September 25). Retrieved from GPL: https://www.gnu.org/licenses/gpl-3.0.html

Apache. (2023, September 25). Retrieved from Apache:
https://www.apache.org/licenses/LICENSE-2.0

NATS. (2023, September 25). Retrieved from Documentation: https://docs.nats.io/

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

82

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

13 LIST OF TABLES
Table 1: Structures defined in the IEEE2030.5. ... 37

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

83

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

14 LIST OF FIGURES
Figure 1: Client/server architecture. ... 14
Figure 2: Client/server architecture where multiple devices and EMSs are present. 15
Figure 3: Overview of the client/server communication. ... 16
Figure 4: Publish-subscribe pattern in client/server communication using shared subject. 17
Figure 5: Publish-subscribe pattern in client/server communication using one subject per
device. .. 17
Figure 6: Publish-subscribe pattern in client/server communication with multiple EMSs and
devices. .. 18
Figure 7: Request-reply pattern in client/server communication. ... 19
Figure 8: Request-reply pattern in client/server communication with multiple EMSs 19
Figure 9: Request-stream pattern in client/server communication. .. 20
Figure 10: Request-stream pattern in client/server communication where another EMS is
present. ... 20
Figure 11: Sequence diagram showing authentication and registration of client device and
publish-subscribe pattern. .. 21
Figure 12: Sequence diagram showing request-reply pattern between client and server. ... 22
Figure 13: Sequence diagram showing request-stream pattern between client and server. 22
Figure 14: Architecture of legacy protocol converter... 23
Figure 15: Architecture of legacy protocol converter with multiple devices and EMSs. 24
Figure 16: Architecture of legacy protocol converter where two legacy protocol converters
communicate over internet. ... 24
Figure 17: Overview of the communication between EMS, legacy protocol converter and
devices. ... 24
Figure 18: Publish/subscribe pattern using legacy protocol converter where devices share
the same subject. ... 25
Figure 19: Publish/subscribe pattern using legacy protocol converter where each device has
its own subject. .. 25
Figure 20: Publish/subscribe pattern using two legacy protocol converters where multiple
EMSs and devices are present. ..26
Figure 21: Request-reply pattern using legacy protocol converter. ...26
Figure 22: Request-reply pattern using legacy protocol converter where two EMSs are
present. ..27
Figure 23: Request/stream pattern using legacy protocol converter. ..27
Figure 24: Sequence diagram showing authentication and registration of client device and
publish-subscribe pattern. ... 28
Figure 25: Sequence diagram showing request-reply pattern with legacy protocol converter.
 ... 28
Figure 26: Sequence diagram showing request-stream pattern with legacy protocol
converter. ..29
Figure 27: Integration of the IEEE 2030.5 over NATS in HESStec HyDEMS. 31
Figure 28: Integration of the IEEE 2030.5 over NATS in Capwatt's LabVIEW. 31
Figure 29: Integration of the IEEE 2030.5 over NATS in CyberGrid’s CyberNoc. 32
Figure 30: Integration of the IEEE 2030.5 over NATS in FZJ ICT platform. 32
Figure 31: Integration of the IEEE 2030.5 over NATS in Enel-X VPP Flex platform. 33
Figure 32: High-level software architecture for the client/server. ... 65
Figure 33: High-level Software architecture for the legacy protocol converter. 65
Figure 34: Interoperability Test tool Architecture. ..69
Figure 35: Interoperability Test tool (Client side) Architecture. .. 70
Figure 36: Interoperability Test tool (Server side) Architecture. .. 70
Figure 37: Example of DeviceCapability. .. 71
Figure 38: Example of EndDevice. ...72

D1.3 Specifications for Interoperable Software Tools
Interoperable Client/Server and Legacy Systems Protocol Converter

84

This project has received funding from the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101096511. Disclaimer: The sole responsibility for any error or omissions lies with the
editor. The content does not necessarily reflect the opinion of the European Commission. The European
Commission is also not responsible for any use that may be made of the information contained herein.

Figure 39: Example of a FunctionSetAssignment. ..72
Figure 40: Example of a DER. ... 73
Figure 41: Open-source repository on GitHub. .. 76

